
A Sampling Ensemble for Asymptotically Complete Motion Planning
with Volume-Reducing Workspace Constraints

Sihui Li∗ Matthew A. Schack∗ Aakriti Upadhyay Neil T. Dantam

Abstract— Many robot tasks impose constraints on the
workspace. For example, a robot may need to move a container
without spilling its contents or open a door following the
doorknob’s arc. Such constraints may induce narrow vol-
umes in the configuration space, traditionally a challenge for
sampling-based methods, and further cause infeasibility. We
extend sample-driven connectivity learning (SDCL), a robust
approach for planning with narrow passages, to develop a
sampling ensemble for workspace constraints. In particular,
the ensemble combines SDCL, projection via dual quaternion
optimization, and random sampling. These complementary
sampling approaches support efficient and robust planning
under workspace constraints. Further, this framework offers the
ability to determine infeasibility under workspace constraints,
which is unaddressed by previous constrained planning methods.

I. INTRODUCTION

Many robot tasks require motion that not only avoids
collision but also satisfies certain workspace constraints. For
example, a robot moving a liquid-filled cup must keep it
upright (see Figure 1), while a robot operating a door must
follow paths constrained by the door’s handle and hinges.
Such constraints limit the valid robot poses and consequently
limit the portion of the configuration space containing
valid plans. Some prior approaches viewed constraints as
manifolds in the configuration space [1], [2]; during planning,
these approaches project configurations onto the manifold
to produce valid plans. In this work, we consider volume-
reducing constraints representing sub-regions of the free
region of the configuration space. Some tasks inherently do
not require strict manifold constraints. For example, holding
a cup sufficiently upright to avoid spilling does not typically
require perfect vertical alignment. Even tasks that seem to
impose manifold constraints, such as opening a door or
drawer, could be reframed as volume-reducing constraints
based on flexibility in the arm through an adaptive control
layer [3] or compliant hardware system [4]. Thus, volume-
reducing constraints support a variety of useful robot tasks.

Volume-reducing constraint decrease the acceptable region
in the configuration space, potentially creating more narrow
passages and increasing planning difficulty due to small
volumes and low sampling probabilities. To resolve this
planning challenge, we adapt Sample-Driven Connectivity
Learning (SDCL) [5], which learns connectivity in the

The authors are with the Department of Computer Science,
Colorado School of Mines, Golden, CO, USA. Email:
{li,mschack,aakriti.upadhyay,ndantam}@mines.edu.
This work was supported in part by the ARL TBAM-CRP [W911NF-
22-2-0235] and ARL DCIST CRA [W911NF-17-2-0181].

∗ contributed equally.

θ

Fig. 1: A volume-reducing workspace constraint. The robot
must transport the container while holding it sufficiently
upright (within θ) to prevent spilling. Constrained motion
within a confined area presents challenges for planning due
to narrow passages and possible infeasibility.

configuration space to generate narrow passage samples, to
now address volume-reducing constraints. The degenerate
case of narrow passages occurs when obstacles and constraints
create an infinitesimal (zero-volume) passage and consequent
infeasibility of planning. To decide whether a plan exists or
not with constraints, we need to construct infeasibility proofs.
We address narrow passages and possible infeasibilities
through an asymptotically complete planing approach, which
returns a plan or an infeasibility proof in the limit [6].

We develop an asymptotically complete algorithm for mo-
tion planning with volume-reducing constraints and demon-
strate the algorithm’s effectiveness. First, we generally view
volume reducing constraints as restrictions on the free space
(see Sec. III), which supports use of blackbox validity check-
ing typical of sampling-based planners [7], [8]. Second, we
adapt the framework of SDCL (see Sec. IV), which supports
efficient planning through narrow passages [5]. Third, we
develop an approach to project sampled configurations into
the constraint region (see Sec. V-B), which more efficiently
satisfies constraints compared to uniform sampling. Fourth,
we analyze this formulation and approach to show that it is
asymptotically complete Sec. V-C. Finally, we evaluate this
work in several robot manipulation scenarios (see Sec. VI).

A key step in our approach is the projection of con-
figurations into the constraint region. We formulate this
projection as a nonlinear program to find valid configurations.
We begin from a sampled configuration that is invalid
(constraint-violating) and then apply local, gradient-based
methods to ensure the workspace constraint is satisfied.
This projection improves our ability to sample constraint-

satisfying configurations compared to uniform sampling alone,
especially for low-volume constraint regions.

We perform experiments in scenes using robots with 5-8
degrees of freedom (DOF) and workspace constraints repre-
senting holding a container upright, keeping the end-effector
within a camera’s field of view, and moving along a Cartesian
plane while adhering to end-effector pose constraints. We
compare our approach against baseline planners in OMPL [9],
demonstrating improved time and robustness for difficult
(narrow passage) scenes and the capability to determine
infeasiblity when no plan exists.

II. RELATED WORK

Sampling-based motion planners, such as probabilistic
roadmaps (PRM) [7] and rapidly exploring random trees
(RRT) [10], are effective and widely-used approaches. Gen-
erally, such planners sample robot configurations and grow a
tree or graph towards the sample. However, challenges may
arise when applying these methods to problems with small
volumes (narrow passages) in the configuration space—which
may be exacerbated by further constraints on the motion—
due to low probability of sampling in, or connecting through,
the small volumes. We address this challenge by developing a
new sampler based on our SDCL algorithm [5], coupled with
a projection approach, to generate samples in the low-volume
regions.

A. Narrow Passages & Guided Sampling

When the configuration space contains narrow passages,
uniform random sampling has low probability of generating
the necessary configurations to find valid plans, so guided
sampling approaches are often used. Bridge test sampling [11]
increases the sampling density in narrow passages based on
local information around the configurations. Some previous
works used topological methods to guide sampling [12], [13]
closer to objects or in narrow passages. KPIECE [14] uses
multi-level grids in the search space to guide sampling in
less explored areas. Visibility [15] and sparsity [16]-based
algorithms guide sampling using the coverage information of
the free space. Other approaches try to learn from previous
samples to guide current sampling [17]–[21].

In this work, we adapt a guided sampling-based approach
based on SDCL [5] to find plans through the narrow passages
induced by volume-reducing constraints. Prior results showed
that SDCL offers robust performance for planning through
narrow passages in unconstrained manipulation problems,
and the structures produced by SDCL effectively integrate
with infeasibility proofs to offer asymptotic completeness.
We now generalize SDCL as a planner-independent sampling
strategy and couple it with projections to guide sampling into
constraint regions.

B. Constrained Motion Planning

Constrained motion planning places certain limitations on
a robot’s motion. Constraints can model range of systems
and are used for parallel robots [22], [23], grasping and
manipulation [24], [25], computational biology and molecular

simulations [26], [27], and animation [28], [29]. For example,
we may specify constraints that a grasped container is held
upright to avoid spilling or that an end-effector maintains
contact with a surface such as for cleaning or painting.

Several forms of constraints are used for motion planning.
In this work, we focus on volume-reducing constraints,
represented as inequalities or intervals that limit valid volumes
of the configuration space. Related to volume-reducing
constraints are soft constraints [30]–[32], which also permit
a volume of feasible values while favoring some particular
value, e.g., filling a water pitcher under a faucet where closer
to alignment to vertical allows the pitcher to hold more
water. While our current work does not directly address soft
constraints, such favored values could be incorporated into
our projection approach. Other constraints may create lower
dimension manifolds within the configuration space [1], [33],
[34]. While some techniques in this current work could apply
to such manifold constraints, analysis of infeasibility and
asymptotically complete motion planning for lower dimension
manifolds remains an area of future work.

Sampling-based methods must address constraint satis-
faction for two operations: sampling configurations and
connecting configurations; Kingston et. al. [2] classify five
techniques to support constraints: relaxation [35]–[37], pro-
jection [1], [30], [33], [38], tangent-space sampling [33],
[39], [40], incremental atlas construction [41]–[43], and
reparameterization [44], [45]. In this work, we take a
projection approach, which is similar to several previous
works. Yao and Gupta applied projections to general end-
effector constraints [46]. Task-constrained RRT [33], [39] and
Constrained Bi-directional RRT (CBiRRT) [1], [47] address
constraints via gradient descent based on the manipulator
Jacobian pseudo-inverse. Similarly, Kunz and Stilman [30]
address soft constraints via gradient descent projection. [38]
constrains grasps, approach directions, and object transport
paths by defining a planning margin based on grasp quality
and success and finding solutions using Nelder-Mead and
Jacobian pseudoinverse methods. Implicit manifold configu-
ration spaces (IMACS) [34] define an implicit configuration
space based on manifold constraints and incorporate projec-
tion onto the manifold. Our work now applies dual quaternion
analysis [48] to formulate projection as a nonlinear program,
supporting general workspace constraints, composition of
multiple constraints, and the use of highly-engineered, robust,
and efficient solution techniques [49]–[52].

C. Infeasibility

Some previous works construct exact path non-existence
guarantees for single, rigid objects in a 2D or 3D
workspace [53], [54]. Others [55], [56] use computational ge-
ometry tools to construct separations in the obstacle regions of
the configuration space. Deterministic sampling-based motion
planning also guarantees plan non-existence to some extent
if no plans are found with the sampling coverage [57]–[60].
Previous works have also applied learning-based methods to
predict infeasible plans [61]–[63]. However, these methods
do not provide definitive plan nonexistence guarantees.

In our previous work [64], [65], we proposed a sampling
and learning-based infeasibility proof construction algorithm.
The algorithm uses sampled configurations to learn a manifold
in the configuration space and try to form a closure in the
obstacle region to prove plan infeasibility. We apply this
algorithm to motion planning problems with volume-reducing
constraints to show infeasibility in some scenes.

III. PROBLEM DEFINITION

We address motion planning with volume reducing con-
straints. We first state the definition of unconstrained motion
planning. Then, we incorporate volume reducing constraints.

An unconstrained motion planning problem [66] consists of
a configuration space C of dimension n, a start configuration
qstart, and a goal configuration qgoal. The configuration space
C is the union of the disjoint obstacle region Cobs and free
space Cfree. Both qstart and qgoal are in Cfree. Typically,
sampling-based motion planners [9] implicitly define Cobs
and free space Cfree via blackbox collision checkers (such as
[67]) that test whether a specific configuration is in Cobs or
Cfree. The output of motion planning is plan σ through free
space such that σ[0, 1] ∈ Cfree, σ[0] = qstart, σ[1] = qgoal.

We consider volume reducing constraints of the form,

Gi (q) ≤ εi, i = 1, . . . , n , (1)

where each Gi : C 7→ R is a scalar function and εi
defines the volume in which this constraint is satisfied. For
example, the constraint to hold a container upright within
tolerance ε would be |ln h(q)| ≤ ε, where h is the rotation
quaternion of the container relative to upright as a function
of configuration q and which we determine from the robot’s
forward kinematics. Configurations satisfying constraints are
Cin = {q ∈ C | Gi (q) ≤ εi,∀i = 1, . . . , n}. Configurations
violating constraints are Cout = C \ Cin. While we might
consider constraints similarly to the implicitly defined obstacle
region based on blackbox validity checking, it is useful to
explicitly define constraints of the form in (1) to support the
projections described in Sec. V-B.

A constrained motion planning problem consists of an
unconstrained motion planning problem, coupled with a set
of constraints G1, . . . ,Gn of the form in (1). To achieve
asymptotic completeness, our probability of terminating with
a plan or infeasibility proof must approach one in the limit [6].
That is, when a plan exists, the output is a plan σ such that
σ[0, 1] ∈ Cfree ∩Cin, σ[0] = qstart, σ[1] = qgoal. When there
is no feasible plan, the output is an infeasibility proof M
consisting of a closed manifold lying entirely in Cobs ∪ Cout
and separating qstart and qgoal.

IV. BACKGROUND

We briefly summarize key details of SDCL [5] and
asymptotically complete motion planning [64], [65] on which
this current work is based.

A. Sample-Driven Connectivity Learning (SDCL)

SDCL integrates sampling-based planning and machine
learning to effectively produce samples in narrow pas-
sages [5]. There are two main steps in SDCL: learning a
manifold and sampling the manifold. In the learning step,
SDCL uses samples in the configuration space as training
data for a classifier. All samples in the qgoal component are
one class, and all other samples are the other class. The
result of learning is a configuration space manifold M(q)
(q ∈ C) that separates the configuration space into two parts.
This learning process encodes in the manifold connectivity
information from the samples of the configuration space. Next,
SDCL samples points on the manifold. Sampled manifold
points in Cfree offer potential connections between the goal
and non-goal components, effective to find plans through
narrow passage.

B. Infeasibility Proof and Asymptotically Complete

An infeasibility proof is a closed manifold in C that is
entirely in Cobs and that separates qstart and qgoal [64], [65].
Such a manifold shows that no path connecting qstart and
qgoal is collision-free, so we can conclude with a path non-
existence guarantee. The infeasibility proof algorithm uses the
same learned manifold M as SDCL and checks whether this
manifold forms an infeasibility proof. Checking the manifold
takes two steps. First, we triangulate the manifold into a
piece-wise linear approximating polytope. Second, we check
if each facet of the polytope is entirely in Cobs.

Completeness is an important property for motion planners.
A complete planner returns a plan or reports plans non-
existence in finite time. Many sampling-based motion planners
are probabilistically complete [7], [8], meaning they find a
plan in the limit for feasible cases. In infeasibility proof
construction, as more points are sampled in Cfree, the learned
manifold is guaranteed to converge to an infeasibility proof
if no plan exists [6]. Combining a probabilistically complete
sampling-based algorithm with infeasibility proof construction
offers asymptotic completeness [6], meaning the planner finds
either a plan or infeasibility proof in the limit.

V. ALGORITHM

In this work, we adapt SDCL and infeasibility proof con-
struction to address volume-reducing workspace constraints.
The result is an asymptotically complete motion planner
supporting workspace constraints.

The key feature is a complementary ensemble of samplers
to efficiently find valid points that satisfy constraints, i.e.,
in Cfree ∩ Cin. Uniform random sampling of configurations
would have low probability of sampling narrow regions of
Cfree∩Cin. Instead, we combine multiple sampling strategies to
robustly find valid configurations. First, one thread samples
narrow passage points similarly to SDCL (see Sec. V-A
and Alg. 1). Second, one thread further projects points
from Cout into Cin (see Sec. V-B and Alg. 2). Third, one
thread performs random sampling (see Alg. 3). When the
planner needs a new sample, we check in turn for samples
produced by each of these threads (see Alg. 4). The SDCL

sampler robustly finds points through narrow passages.
The projection sampler effectively finds constraint-satisfying
points. The random sampler offers further space coverage
over projections, supporting connectivity learning performed
by SDCL. Together, this ensemble efficiently and robustly
finds useful samples for constrained motion planning.

Additionally, planning under constraints requires valid
(within Cfree ∩ Cin) tree/roadmap edges. Some approaches
verify edges with the local planner [8]. Rather than modifying
the local planner for every distinct motion planner, we instead
adjust the validity checker to test whether a configuration
is simultaneously in Cfree and in Cin. This modification
further ensures that infeasibility proof construction checks
for manifold containment in Cobs ∪ Cout.

A. SDCL Constraint Sampler

In this work, we adapt SDCL to both operate as a sampler
and incorporate volume-reducing constraints. SDCL (see
Alg. 1) operates with any multi-directional sampling-based
motion planner such as a PRM [7]. In Alg. 1, Pgoal are
all graph nodes connectable to qgoal, and Prest are all the
other graph nodes. We learn the manifold M from these two
classes (line 4) and then sample the manifold. SDCL saves
all sampled manifold points in Cfree to a set B (line 7). In
a separate thread, Alg. 2 projects points into the constraint
region. When the sampler (see Alg. 4) is called from a planner,
it checks first for valid points from SDCL’s manifold and
projected points; if no points exist, the sampler falls back to
random sampling.

Algorithm 1: SDCL Sampling Thread

Input: g, Q // Planning graph, All sampled config
Output: B1 // Valid configurations for Alg. 4

1 repeat
2 Pgoal ← all nodes of g connectable to qgoal

3 Prest ← g \ Pgoal // Other nodes
4 M ← Learn(Prest, Pgoal)
5 foreach q ∈ Q do // sample in parallel
6 qm ← SampleManifold(q,M)
7 if qm ∈ Cfree ∩ Cin then B1 ← B1 ∪ {qm}
8 until plan or infeasibility proof found

Algorithm 2: Projection Sampling Thread

Input: G // Constraints
Output: B2 // Valid configurations for Alg. 4

1 repeat // Solve Equation 2
2 r ← RandomSample()

3 s← Solve
from r

(
maxq 0
s.t. Gi (q) ≤ εi ∀i ≤ n

)
4 if s ∈ Cfree ∩ Cin then B2 ← B2 ∪ {s}
5 until plan or infeasibility proof found

Algorithm 3: Random Sampling Thread

Output: B3 // Valid configurations for Alg. 4
1 repeat
2 s← RandomSample()
3 if s ∈ Cfree ∩ Cin then B3 ← B3 ∪ {s}
4 until plan or infeasibility proof found

Algorithm 4: Sample

Input: B1 B2, B3 // Valid configs from samplers
Output: s // A valid sample

1 loop
2 if B1 ̸= ∅ then return pop(B1)
3 else if B2 ̸= ∅ then return pop(B2)
4 else if B3 ̸= ∅ then return pop(B3)
5 else
6 s← RandomSample()
7 if s ∈ Cfree ∩ Cin then return s

B. Projection into Constraint Region

We project sampled points into Cin using a local, gradient-
based method. Specifically, we create a nonlinear program
(NLP) to find points in Cin. The NLP formulation is in-
dependent of the particular optimization algorithm, though
our experiments (see Sec. VI) use a sequential least squares
quadratic programming (SLSQP) approach [49]–[51], which
is a quasi-Newton method that approximates the Hessian
and needs only the gradient. Though numerical methods to
compute gradients are possible, many constraints (including
all in Sec. VI) are expressible analytically as limitations on
the workspace—e.g., holding a container upright limits the
possible orientations of the end effector. Analytic gradients
of such workspace constraints are computable via the chain
rule and manipulator Jacobian (see Sec. V-B.2).

1) Optimization Formulation: We formulate an NLP to
project an input configuration q into constraint region Cin.
We only need valid samples in Cin, so we express the NLP
using constraints G and a constant objective. As a result, we
only apply the projection when the input configuration does
not satisfy the constraints—i.e., q /∈ Cin.

max
q

0 (2)

s.t. Gi (q) ≤ εi ∀i ≤ n

We do require gradients to solve this NLP using SLSQP.
While there is no guarantee that analytic gradients will
exist for arbitrary G, we can often effectively use numerical
approximations (finite difference). Further, analytic gradients
are computable for many workspace constraints.

2) Workspace Constraints: Many robot tasks impose
workspace constraints that limit translation and/or orientation.
We consider a special Euclidean group SE(3) workspace.
Such a constraint Gi is then expressible as,

Gi (q) = Fi

(
0Sf (q)

)
, (3)

where 0Sf (q) ∈ SE(3) represents the workspace pose of
coordinate frame f , and Fi : SE(3) 7→ R is a workspace
constraint on frame f . The chain rule reduces the gradient of
Gi to a function of workspace constraint gradient ∇Fi and
manipulator Jacobian J.

∇Gi (q) = ∇Fi

(
0Sf (q)

)
∗ ∂

∂q
0Sf (q) (4)

= ∇Fi

(
0Sf (q)

)
∗ J (q)

=
(
J(q)T

(
∇Fi

(
0Sf (q)

))T)T

Sec. VI-A describes several specific constraints F .
We note that multiple representations of pose 0Sf and

Jacobian J are possible, based generally on the structure
of SE(3). However, one typical form of the manipulator
Jacobian, relating workspace and configuration space veloci-
ties (i.e.,

[
ω v̇

]T
= Jxq̇), is not directly applicable to (4).

Instead, we use dual number quaternions for poses because
we can robustly take their Jacobians [48]. Dual quaternion
pose S is,

S = h +
1

2
v⃗ ⊗ hε , (5)

where h is the rotation ordinary quaternion, v⃗ is the translation
vector, and ε is the dual number element (ε2 = 0, ε ̸= 0).
The manipulator Jacobian in dual quaternion form is then,

J =
∂S
∂q

=
1

2
[S]R JΩ (6)

where [S]R is the right matrix form of dual quaternion
multiplication and JΩ is the twist form of the Jacobian (i.e.,[
ω v̇ + v⃗ × ω

]T
= JΩq̇) [68]. We refer the reader to [48]

for further details on dual quaternions for robot kinematics.

C. Completeness Analysis

We discuss the requirements for asymptotic completeness
of our algorithm, i.e., that in the limit we find a plan when
one exists or prove infeasibility when no plan exists.

1) ε-goodness for Cfree and Cin: Generally, probabilis-
tic completeness of sampling-based planners requires the
ε-goodness property [69] for Cfree or similar notion of
δ-clearance [8], [70], which means Cfree has a “reasonably
large” volume for the path to exist. ε-goodness and δ-
clearance pose the same requirements but defined for dif-
ferent components of motion planning; in this paper, we
use ε-goodness since we need to discuss a region of the
configuration space directly.

We require ε-goodness for Cfree ∩ Cin, such that we have
a volume to sample free space and constraint-satisfying
configurations and form a path. In most cases, ε-goodness
for Cfree ∩ Cin means Cin needs to be ε-good, though it is
possible for infinitesimal regions of Cin to be subsumed within
non-infinitesimal regions of Cfree, or vice-versa.

2) ε-blocked for Cobs and Cout: Previously, we introduced
the ε-blocked property for Cobs to guarantee that Cobs has
sufficient “thickness” to support learning the infeasibility
proof [6]. We require the same ε-blocked property for
Cobs ∪ Cout, that is, the union of the region not satisfying the

volume-reducing constraints and the obstacle region cannot be
infinitesimal. For example, we do not consider cases where
Cout is a set of disjoint points in Cfree, such as avoiding
contact with a single hazardous point or avoiding kinematic
singularities.

3) Asymptotic Completeness under volume-reducing con-
straints: With ε-good Cfree ∩ Cin and ε-blocked Cobs ∪ Cout,
our algorithm is asymptotically complete. When a plan exists,
the algorithm finds a plan in the limit, since Cfree ∩ Cin has a
volume we can sample and the SDCL sampler incorporates
random sampling if SDCL and projection are not effective.
When a plan does not exist, samples generated in Cfree ∩ Cin
push the learned manifold into Cobs ∪ Cout to form the
infeasibility proof.

VI. EXPERIMENTS

We evaluate our algorithm in scenes with various volume-
reducing constraints and robots with 5 to 8 DOF (shown
in Figure 2). The constraints differ in how much of the
valid space they remove and whether they restrict the
end effector’s position (Sec. VI-A.1 and Sec. VI-A.2) or
orientation (Sec. VI-A.3). We evaluate our results over 10
trials for each scene and compare the SCDL [5] sampler
and SDCL with projection sampler find the narrow passages
as well as with 7 baseline algorithms from OMPL [9],
RRTConnect [8], PRM [7], LBKPIECE [14], EST [71],
SBL [72], LBTRRT [73], BFMT [74].

We leverage parallelism in several parts of our algorithm
and run our experiment on a multi-core system with NVIDIA
TU102 GPU and a dual CPU AMD EPYC 7402 with
24 cores per CPU. We adapt PRM [75] in OMPL [9]
to work with the SDCL thread. We solve the nonlinear
optimization problems using sequential least-squares quadratic
programming (SLSQP) [50], [51] in NLopt [76]. We train the
RBF-kernel SVM using ThunderSVM [77], which supports
GPU-accelerated SVM training. We check collisions using the
Flexible Collision Library [67]. We model robot kinematics
using Amino [78].

A. Test Scenes and Constraints

We evaluate our approach on four scenes with different
volume-reducing constraints. Three scenes are feasible, and
the final scene is infeasible.

1) Visibility Constraint: The scene in Figure 2a constrains
the robot to keep its end effector within a camera’s Field of
View (FOV) in a kitchen environment.

We represent FOV as an infinitely extended cone with
apex v⃗cone ∈ R3, center axis represented as a unit vector
caxis ∈ R3, and viewing angle cθ ∈

[
0, π

2

]
. We determine if

a point lies within the cone’s FOV by comparing the cosines
of viewing angle cθ and the angle between the cone’s axis
and the vector from the cone’s origin to the input point v⃗,

cos (cθ) ≤ Fcone (v⃗) ≜
(v⃗ − v⃗cone) · caxis
|(v⃗ − v⃗cone)|

, (7)

where v⃗ is the end effector’s workspace position. Since Fcone

is independent of orientation, its gradient is based solely the

Start

Goal

(a) Kitchen Field of View

Start

Goal

(b) Planar Motion

Start

Goal

(c) Upright Shelf

Start Goal

(d) Infeasible

Fig. 2: Three feasible test scenes and one infeasible scene with different robots and constraints. (a) Fetch must keep its end
effector within the camera’s Field of View. (b) Baxter must move its gripper at a constant height relative to the table. (c)
Franka Panda must keep the cup upright while moving it between shelves. (d) An infeasible scene; Schunk LWA4D must
move the cylinder into the cabinet without tilting beyond a limit.

end effector translation.

∇Fcone =
∂

∂v⃗

(v⃗ − v⃗cone) · caxis
|(v⃗ − v⃗cone)|

(8)

=
caxis

|(v⃗ − v⃗cone)|
− (v⃗ − v⃗cone) · caxis
|(v⃗ − v⃗cone)|3/2

(v⃗ − v⃗cone)

2) Planar Constraint: The scene in Figure 2b constrains
a 7 DOF Baxter arm to be a fixed height above a table. We
specify this constraint by requiring the distance between the
end effector’s height, z, and a reference height, zref be less
than some small number ϵplane,

ϵplane ≥ Fplane (z) ≜ |z − zref|2 . (9)

The gradient of (9) via the chain rule is,

∇Fplane =
∂

∂z
|z − zref|2 =

z − zref

|z − zref|2
. (10)

3) Upright Constraint: The scene in Figure 2c constrains
a 7 DOF Franka arm to hold a cup level while moving it
between shelves. We specify this constraint based on relative
rotation angle,

ϵθ ≥ Fup (h) ≜ |ln (h∗ ⊗ href)|2xy , (11)

where ϵθ specifies permissible rotation from vertical, h is
the cup orientation quaternion, href is the upright rotation
quaternion, and |(x, y, z)|2xy = x2 + y2. The gradient of (11)
follows from the methods described in [48].

4) Infeasible Scene: Figure 2d contains an infeasible scene
to show that our algorithm generates infeasibility proofs when
plans do not exist. The robot must move a cup from a position
outside of the shelf to a position on the shelf. In this scene,
we use the Schunk LWA4D, fixing the fifth and the last joints
to limit to five DOF. Without upright constraints (11), a plan
exists. With the upright constraint, no plan exists and the
algorithm returns an infeasibility proof. We ran 20 trials, and
all successfully proved infeasibility with a mean runtime of
60.40 s and a standard deviation of 41.20 s.

B. Results
For the upright constraint and the planar constraint scenes,

our algorithm is the fastest and most robust. We set the timeout
to be 100 seconds; in most cases, the baseline motion planners
cannot find a path within the time limit, which means the
actual runtime difference to find paths is larger. These two
scenes show improvement from our approach because the
constraints creates narrow passages in the configuration space,
showing that the projection and SDCL help resolve narrow
passages well. In the FOV constraint scene, our algorithm is
not the fastest, because the FOV constraint covers a whole
region, as is shown in Figure 2a, which does not result in
configuration space narrow passages.

Comparing the SDCL sampler with and without the
projection, in the upright constraint scene, the projection
improves the runtime by 44.9%. The other scenes do not
show obvious differences when running SDCL with and
without the projection. This means it is difficult to sample
the upright constraint region with random sampling.

VII. CONCLUSION

We have presented an ensemble of samplers for robust
planning under workspace constraints. This approach inte-
grates sample-driven connectivity learning for robust planning
through narrow passages, nonlinear programming to sample
constraint-satisfying points, and random sampling to promote
space coverage. In the tested scenes, baseline planners perform
well for an easy scene (without narrow passages), while
our approach offered time and robustness improvements for
difficult scenes (containing narrow passages). Further, this
algorithmic framework offers asymptotic completeness, mean-
ing we can determine when motion planning is infeasible.

There are several possible avenues for future work. First,
while the current work focused on volume-reducing hard
constraints, soft constraints could be directly incorporated
into the projection as an optimization objective within (2).
Second, in our current implementation, infeasibility proofs
are tractable for up to five DOF robots; in ongoing work, we
are developing parallel, accelerated algorithms to scale infea-
sibility proofs to higher DOF. Finally, proving infeasibilities
which are caused by lower dimension manifold constraints
remains an area requiring further work and analysis.

Algorithm Kitchen (Figure 2a) Upright (Figure 2c) Planar (Figure 2b)
Mean Runtime (s) Completed Means Runtime (s) Completed Mean (s) Completed

ProjectSDCL 21.17 ± 23.59 10 37.03 ± 16.79 10 12.88 ± 3.43 10
SDCL 24.88 ± 21.12 10 67.23 ± 14.01 10 11.38 ± 4.30 10
PRM 34.32 ± 37.57 8 100.08 ± 0.04 0 100.07 ± 0.03 0

LBKPIECE1 3.33 ± 1.51 10 82.80 ± 23.23 4 100.04 ± 0.02 0
LBTRRT 100.14 ± 0.17 0 100.06 ± 0.03 0 100.04 ± 0.02 0

SBL 10.12 ± 3.86 10 100.07 ± 0.03 0 100.05 ± 0.02 0
BFMT 12.96 ± 2.11 10 100.40 ± 0.70 0 100.18 ± 0.18 0
EST 47.18 ± 30.95 9 100.07 ± 0.04 0 100.05 ± 0.03 0

RRTConnect 0.78 ± 0.48 10 100.07 ± 0.03 0 100.05 ± 0.03 0

TABLE I: The runtime and success rate of ProjectSDCL and the baseline methods for the kitchen (Figure 2a), upright
(Figure 2c), and planar (Figure 2b) environments. The planar and upright environments were more constrained than the
kitchen environment, making them more challenging to solve by purely sampling the space. Our work projects sampled
points into the constraint regions, allowing us to more efficiently sample the space leading to faster performance on the more
constrained scenes.

REFERENCES

[1] D. Berenson, S. S. Srinivasa, D. Ferguson, and J. J. Kuffner, “Manipu-
lation planning on constraint manifolds,” in ICRA, 2009, pp. 625–632.

[2] Z. Kingston, M. Moll, and L. E. Kavraki, “Sampling-based methods for
motion planning with constraints,” Annual Review of Control, Robotics,
and Autonomous Systems, vol. 1, no. 1, pp. 159–185, 2018.

[3] C. K. Verginis, D. V. Dimarogonas, and L. E. Kavraki, “Sampling-based
motion planning for uncertain high-dimensional systems via adaptive
control,” in Algorithmic Foundations of Robotics XIV: Proceedings of
the Fourteenth Workshop on the Algorithmic Foundations of Robotics
14. Springer, 2021, pp. 159–175.

[4] M. Bonilla, E. Farnioli, L. Pallottino, and A. Bicchi, “Sample-based
motion planning for robot manipulators with closed kinematic chains,”
in 2015 IEEE International Conference on Robotics and Automation
(ICRA). IEEE, 2015, pp. 2522–2527.

[5] S. Li and N. T. Dantam, “Sample-Driven Connectivity Learning for
Motion Planning in Narrow Passages,” in International Conference on
Robotics and Automation (ICRA). IEEE, 2023, pp. 5681–5687.

[6] ——, “Exponential convergence of infeasibility proofs for kinematic
motion planning,” in WAFR, 2022.

[7] L. E. Kavraki, P. Svestka, J.-C. Latombe, and M. H. Overmars, “Prob-
abilistic roadmaps for path planning in high-dimensional configuration
spaces,” T-RO, vol. 12, no. 4, pp. 566–580, 1996.

[8] J. J. Kuffner and S. M. LaValle, “RRT-connect: An efficient approach
to single-query path planning,” in ICRA, vol. 2, 2000, pp. 995–1001.

[9] I. A. Şucan, M. Moll, and L. E. Kavraki, “The open motion planning
library,” RAM, vol. 19, no. 4, pp. 72–82, 2012.

[10] S. M. LaValle and J. J. Kuffner, “Randomized kinodynamic planning,”
IJRR, vol. 20, no. 5, pp. 378–400, 2001.

[11] D. Hsu, T. Jiang, J. Reif, and Z. Sun, “The bridge test for sampling
narrow passages with probabilistic roadmap planners,” in ICRA, vol. 3.
IEEE, 2003, pp. 4420–4426.

[12] A. Upadhyay, B. Goldfarb, W. Wang, and C. Ekenna, “A new
application of discrete morse theory to optimizing safe motion planning
paths,” in International Workshop on the Algorithmic Foundations of
Robotics. Springer, 2023, pp. 18–35.

[13] S. Ruan, K. L. Poblete, H. Wu, Q. Ma, and G. S. Chirikjian,
“Efficient path planning in narrow passages for robots with ellipsoidal
components,” IEEE Transactions on Robotics, 2022.

[14] I. A. Şucan and L. E. Kavraki, “Kinodynamic motion planning by
interior-exterior cell exploration,” in Algorithmic Foundation of Robotics
VIII: Selected Contributions of the Eight International Workshop on the
Algorithmic Foundations of Robotics. Springer, 2009, pp. 449–464.

[15] T. Siméon, J.-P. Laumond, and C. Nissoux, “Visibility-based proba-
bilistic roadmaps for motion planning,” Advanced Robotics, vol. 14,
no. 6, pp. 477–493, 2000.

[16] A. Dobson and K. E. Bekris, “Sparse roadmap spanners for asymptot-
ically near-optimal motion planning,” IJRR, vol. 33, no. 1, pp. 18–47,
2014.

[17] B. Burns and O. Brock, “Single-query motion planning with utility-
guided random trees,” in ICRA. IEEE, 2007, pp. 3307–3312.

[18] ——, “Sampling-based motion planning using predictive models,” in
Proceedings of the 2005 IEEE international conference on robotics
and automation. IEEE, 2005, pp. 3120–3125.

[19] S. Dalibard and J.-P. Laumond, “Linear dimensionality reduction
in random motion planning,” The International Journal of Robotics
Research, vol. 30, no. 12, pp. 1461–1476, 2011.

[20] W. Wang, L. Zuo, and X. Xu, “A learning-based multi-RRT approach
for robot path planning in narrow passages,” Journal of Intelligent &
Robotic Systems, vol. 90, no. 1, pp. 81–100, 2018.

[21] B. Ichter, J. Harrison, and M. Pavone, “Learning sampling distributions
for robot motion planning,” in 2018 IEEE International Conference
on Robotics and Automation (ICRA). IEEE, 2018, pp. 7087–7094.

[22] H.-J. Su and J. M. McCarthy, “Dimensioning a constrained parallel
robot to reach a set of task positions,” in Proceedings of the 2005
IEEE International Conference on Robotics and Automation. IEEE,
2005, pp. 4026–4030.

[23] N. Zhang and W. Shang, “Dynamic trajectory planning of a 3-dof
under-constrained cable-driven parallel robot,” Mechanism and Machine
Theory, vol. 98, pp. 21–35, 2016.

[24] R. Holladay, T. Lozano-Pérez, and A. Rodriguez, “Force-and-motion
constrained planning for tool use,” in 2019 IEEE/RSJ international
conference on intelligent robots and systems (IROS). IEEE, 2019, pp.
7409–7416.

[25] A. M. Zanchettin and P. Rocco, “Motion planning for robotic
manipulators using robust constrained control,” Control Engineering
Practice, vol. 59, pp. 127–136, 2017.

[26] L.-Q. Yang, P. Sang, Y. Tao, Y.-X. Fu, K.-Q. Zhang, Y.-H. Xie,
and S.-Q. Liu, “Protein dynamics and motions in relation to their
functions: several case studies and the underlying mechanisms,” Journal
of Biomolecular Structure and Dynamics, vol. 32, no. 3, pp. 372–393,
2014.

[27] A. Upadhyay, T. Tran, and C. Ekenna, “A topology approach towards
modeling activities and properties on a biomolecular surface,” in 2021
IEEE International Conference on Bioinformatics and Biomedicine
(BIBM). IEEE, 2021, pp. 157–162.

[28] M. Kallmann, A. Aubel, T. Abaci, and D. Thalmann, “Planning
collision-free reaching motions for interactive object manipulation
and grasping,” in ACM SIGGRAPH 2008 classes, 2008, pp. 1–11.

[29] C. Schulz, C. von Tycowicz, H.-P. Seidel, and K. Hildebrandt,
“Animating deformable objects using sparse spacetime constraints,”
ACM Transactions on Graphics (TOG), vol. 33, no. 4, pp. 1–10, 2014.

[30] T. Kunz and M. Stilman, “Manipulation planning with soft task
constraints,” in IROS, 2012, pp. 1937–1942.

[31] N. M. Ceriani, A. M. Zanchettin, P. Rocco, A. Stolt, and A. Robertsson,
“Reactive task adaptation based on hierarchical constraints classification
for safe industrial robots,” IEEE/ASME Transactions on Mechatronics,
vol. 20, no. 6, pp. 2935–2949, 2015.

[32] J. Wang, S. Liu, B. Zhang, and C. Yu, “Manipulation planning with soft
constraints by randomized exploration of the composite configuration
space,” International Journal of Control, Automation and Systems,
vol. 19, no. 3, pp. 1340–1351, 2021.

[33] M. Stilman, “Task constrained motion planning in robot joint space,”
in IROS. IEEE, 2007, pp. 3074–3081.

[34] Z. Kingston, M. Moll, and L. E. Kavraki, “Exploring implicit spaces
for constrained sampling-based planning,” IJRR, vol. 38, no. 10-11,
pp. 1151–1178, 2019.

[35] M. Bonilla, L. Pallottino, and A. Bicchi, “Noninteracting constrained
motion planning and control for robot manipulators,” in 2017 IEEE
International Conference on Robotics and Automation (ICRA). IEEE,
2017, pp. 4038–4043.

[36] S. Rodriguez, S. Thomas, R. Pearce, and N. M. Amato, “Resampl: A
region-sensitive adaptive motion planner,” in WAFR. Springer, 2008,
pp. 285–300.

[37] J. Bialkowski, M. Otte, and E. Frazzoli, “Free-configuration biased
sampling for motion planning,” in IROS. IEEE, 2013, pp. 1272–1279.

[38] J. Huh, B. Lee, and D. D. Lee, “Constrained sampling-based planning
for grasping and manipulation,” in 2018 IEEE International Conference
on Robotics and Automation (ICRA). IEEE, 2018, pp. 223–230.

[39] M. Stilman, “Global manipulation planning in robot joint space with
task constraints,” IEEE Transactions on Robotics, vol. 26, no. 3, pp.
576–584, 2010.

[40] M. Cefalo, G. Oriolo, and M. Vendittelli, “Task-constrained motion
planning with moving obstacles,” in IROS. IEEE, 2013, pp. 5758–
5763.

[41] B. Kim, T. T. Um, C. Suh, and F. C. Park, “Tangent bundle rrt: A
randomized algorithm for constrained motion planning,” Robotica,
vol. 34, no. 1, pp. 202–225, 2016.

[42] L. Jaillet and J. M. Porta, “Path planning under kinematic constraints by
rapidly exploring manifolds,” IEEE Transactions on Robotics, vol. 29,
no. 1, pp. 105–117, 2013.

[43] L. Jaillet and J. Porta, “Asymptotically-optimal path planning on
manifolds,” in Proceedings of Robotics: Science and Systems, Sydney,
Australia, July 2012.

[44] T. McMahon, S. Thomas, and N. M. Amato, “Sampling-based
motion planning with reachable volumes for high-degree-of-freedom
manipulators,” The International Journal of Robotics Research, vol. 37,
no. 7, pp. 779–817, 2018.

[45] L. Han, L. Rudolph, J. Blumenthal, and I. Valodzin, “Convexly stratified
deformation spaces and efficient path planning for planar closed chains
with revolute joints,” IJRR, vol. 27, no. 11-12, pp. 1189–1212, 2008.

[46] Z. Yao and K. Gupta, “Path planning with general end-effector
constraints,” Robotics and Autonomous Systems, vol. 55, no. 4, pp.
316–327, 2007.

[47] D. Berenson, S. Srinivasa, and J. Kuffner, “Task space regions: A
framework for pose-constrained manipulation planning,” IJRR, vol. 30,
no. 12, pp. 1435–1460, 2011.

[48] N. T. Dantam, “Robust and efficient forward, differential, and inverse
kinematics using dual quaternions online,” in IJRR. Springer, 2020.

[49] S. G. Johnson, “The NLopt nonlinear-optimization package,” 2024,
http://github.com/stevengj/nlopt.

[50] D. Kraft, “A software package for sequential quadratic programming,”
Institut für Dynamik der Flugsysteme, Oberpfaffenhofen, Tech. Rep.
DFVLR-FB 88-28, July 1988.

[51] ——, “Algorithm 733: TOMP–fortran modules for optimal control
calculations,” Transactions on Mathematical Software (TOMS), vol. 20,
no. 3, pp. 262–281, 1994.

[52] S. Agarwal, K. Mierle, and T. C. S. Team, “Ceres Solver,” 10 2023.
[Online]. Available: https://github.com/ceres-solver/ceres-solver

[53] A. Varava, J. F. Carvalho, F. T. Pokorny, and D. Kragic, “Caging
and path non-existence: a deterministic sampling-based verification
algorithm,” in Robotics Research. Springer, 2020, pp. 589–604.

[54] J. Basch, L. J. Guibas, D. Hsu, and A. T. Nguyen, “Disconnection
proofs for motion planning,” in ICRA, 2001.

[55] Z. McCarthy, T. Bretl, and S. Hutchinson, “Proving path non-existence
using sampling and alpha shapes,” in ICRA. IEEE, 2012, pp. 2563–
2569.

[56] S. Li and N. T. Dantam, “Towards general infeasibility proofs in motion
planning,” in IROS, 2020, pp. 6704–6710.

[57] M. S. Branicky, S. M. LaValle, K. Olson, and L. Yang, “Quasi-
randomized path planning,” in ICRA, vol. 2. IEEE, 2001, pp. 1481–
1487.

[58] L. Janson, B. Ichter, and M. Pavone, “Deterministic sampling-based
motion planning: Optimality, complexity, and performance,” IJRR,
vol. 37, no. 1, pp. 46–61, 2018.

[59] M. Tsao, K. Solovey, and M. Pavone, “Sample complexity of proba-
bilistic roadmaps via ε-nets,” in ICRA. IEEE, 2020, pp. 2196–2202.

[60] D. Dayan, K. Solovey, M. Pavone, and D. Halperin, “Near-optimal
multi-robot motion planning with finite sampling,” T-RO, 2023.

[61] A. Wells, N. T. Dantam, A. Shrivastava, and L. E. Kavraki, “Learning
feasibility for task and motion planning in tabletop environments,”
RAM, vol. 4, no. 2, pp. 1255–1262, 2019.

[62] D. Driess, O. Oguz, J.-S. Ha, and M. Toussaint, “Deep visual heuristics:
Learning feasibility of mixed-integer programs for manipulation
planning,” in ICRA, 2020, pp. 9563–9569.

[63] D. Driess, J.-S. Ha, R. Tedrake, and M. Toussaint, “Learning geometric
reasoning and control for long-horizon tasks from visual input,” in
ICRA, 2021, pp. 14 298–14 305.

[64] S. Li and N. T. Dantam, “A Sampling and Learning Framework to
Prove Motion Planning Infeasibility,” The International Journal of
Robotics Research (IJRR), 2023.

[65] ——, “Scaling Infeasibility Proofs via Concurrent, Codimension-one,
Locally-updated Coxeter Triangulation,” IEEE Robotics and Automation
Letters (RA-L), 2023.

[66] S. M. LaValle, Planning algorithms. Cambridge university press,
2006.

[67] J. Pan, S. Chitta, and D. Manocha, “FCL: A general purpose library
for collision and proximity queries,” in ICRA, 2012, pp. 3859–3866.

[68] K. M. Lynch and F. C. Park, Modern Robotics: Mechanics, Planning,
and Control. Cambridge University Press, 2017.

[69] L. E. Kavraki, J.-C. Latombe, R. Motwani, and P. Raghavan, “Ran-
domized query processing in robot path planning,” JCSS, vol. 57, no. 1,
pp. 50–60, 1998.

[70] S. Karaman and E. Frazzoli, “Sampling-based algorithms for optimal
motion planning,” IJRR, vol. 30, no. 7, pp. 846–894, 2011.

[71] D. Hsu, J.-C. Latombe, and R. Motwani, “Path planning in expansive
configuration spaces,” in Proceedings of international conference on
robotics and automation, vol. 3. IEEE, 1997, pp. 2719–2726.

[72] G. Sánchez and J.-C. Latombe, “A single-query bi-directional prob-
abilistic roadmap planner with lazy collision checking,” in Robotics
research. Springer, 2003, pp. 403–417.

[73] O. Salzman and D. Halperin, “Asymptotically near-optimal rrt for fast,
high-quality motion planning,” IEEE Transactions on Robotics, vol. 32,
no. 3, pp. 473–483, 2016.

[74] J. A. Starek, J. V. Gomez, E. Schmerling, L. Janson, L. Moreno,
and M. Pavone, “An asymptotically-optimal sampling-based algorithm
for bi-directional motion planning,” in 2015 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS). IEEE, 2015,
pp. 2072–2078.

[75] L. E. Kavraki, P. Švestka, J. C. Latombe, and M. H. Overmars, “Prob-
abilistic roadmaps for path planning in high-dimensional configuration
spaces,” vol. 12, no. 4, pp. 566–580, August 1996.

[76] S. G. Johnson and J. Schueller, “Nlopt: Nonlinear optimization library,”
Astrophysics Source Code Library, pp. ascl–2111, 2021.

[77] Z. Wen, J. Shi, Q. Li, B. He, and J. Chen, “ThunderSVM: A fast SVM
library on GPUs and CPUs,” Journal of Machine Learning Research,
vol. 19, pp. 797–801, 2018.

[78] N. T. Dantam, “Robust and efficient forward, differential, and inverse
kinematics using dual quaternions,” IJRR, 2020.

