
IEEE ROBOTICS AND AUTOMATION LETTERS, VOL. 8, NO. 12, DECEMBER 2023 8303

Scaling Infeasibility Proofs via Concurrent,
Codimension-One, Locally-Updated

Coxeter Triangulation
Sihui Li , Graduate Student Member, IEEE, and Neil T. Dantam , Member, IEEE

Abstract—Achieving a complete motion planner that guarantees
a plan or infeasibility proof in finite time is challenging, espe-
cially in high-dimensional spaces. Previous efforts have introduced
asymptotically complete motion planners capable of providing a
plan or infeasibility proof given long enough time. The algorithm
trains a manifold using configuration space samples as data and
triangulates the manifold to ensure its existence in the obstacle
region of the configuration space. In this letter, we extend the
construction of infeasibility proofs to higher dimensions by adapt-
ing Coxeter triangulation’s manifold tracing and cell construction
procedures to concurrently triangulate the configuration space
codimension-one manifold, and we apply a local elastic update
to fix the triangulation when part of it is in the free space. We
perform experiments on 4-DOF and 5-DOF serial manipulators.
Infeasibility proofs in 4D are two orders of magnitude faster than
previous results. Infeasibility proofs in 5D complete within minutes.

Index Terms—Motion and path planning, computational
geometry.

I. INTRODUCTION

A COMPLETE motion planner must either return a path
from the start to the goal or report path non-existence

in finite time. Complete motion planning would benefit many
high-level planning problems where motion planning is a sub-
problem [1], [2], [3], [4]. However, achieving completeness
is challenging when the configuration spaces are continuous,
high-dimensional, and implicitly defined. Many sampling-based
motion planners are probabilistically complete [5], [6], [7], [8],
[9], [10], meaning that if a path exists in the configuration
space, the planner returns a plan given long enough time. Recent
work [11] defined the notion of asymptotic completeness in
which the planner returns a path or reports path non-existence
given long enough time. Compared to probabilistic complete-
ness, asymptotic completeness offers the additional capability
of producing path non-existence or infeasibility proofs. In this
letter, we address scalability challenges of asymptotically com-
plete motion planning.

Manuscript received 13 June 2023; accepted 23 September 2023. Date of
publication 25 October 2023; date of current version 3 November 2023. This
letter was recommended for publication by Associate Editor Jingjin Yu and
Editor Hanna Kurniawati upon evaluation of the reviewers’ comments. This
work was supported in part by NSF under Grant IIS-1849348, in part by NSF
under Grant CCF-2124010, and in part by ONR under Grant N00014-21-1-2418.
(Corresponding author: Sihui Li.)

The authors are with the Department of Computer Science, Colorado School
of Mines, Golden, CO 80401 USA (e-mail: li@mines.edu; ndantam@mines.
edu).

This letter has supplementary downloadable material available at
https://doi.org/10.1109/LRA.2023.3327655, provided by the authors.

Digital Object Identifier 10.1109/LRA.2023.3327655

Fig. 1. Algorithm overview. Three threads run in parallel. The algorithm
terminates with a plan or an infeasibility proof.

Previous work [12], [13] proposed an asymptotically com-
plete sampling and learning based motion planning framework.
The constructed infeasibility proof is a closed manifold or poly-
tope that is fully in the obstacle region and separates the start
and goal. The algorithm runs in parallel with sampling-based
motion planners and uses the sampled configurations as data to
learn a manifold. A triangulation of this manifold then provides
the infeasibility proof. Each facet of the triangulation is checked
to ensure containment in the obstacle region of the configuration
space. This prior algorithm scaled to 4D configuration spaces.
The major scalability limit is the triangulation step, which takes
the majority of the runtime. This letter presents an approach to
scale the triangulation step by adapting and integrating a new
computational geometry tool, Coxeter triangulation [14].

The same training and sampling framework can also solve
narrow passage motion planning problems, which is called
sample-driven connectivity learning (SDCL) [15]. There is a
natural integration of SDCL and infeasibility proof construction
since both use the same manifold learned from configuration
samples. This letter employs a new algorithmic framework that
combines SDCL and infeasibility proof construction (Fig. 1).

In this work, we present an asymptotically complete motion
planner that generates infeasibility proofs using an adaptation
of Coxeter triangulation and simultaneously improve narrow
passage motion planning. The infeasibility proof construction
is two orders of magnitude faster than previous work. The major
contributions are listed here. 1) We adapt Coxeter triangula-
tion [14] for codimention-one manifold with elastic updates to
locally fix the triangulation to resolve the scalability limit. 2)
We adapt the overall algorithm structure to facilitate narrow
passage motion planning. 3) We utilize parallel computing tech-
niques for triangulation, which is enabled by our adaptation of
Coxeter triangulation and overall framework. 4) We propose a
new bisection and checking step for facets in the triangulation

2377-3766 © 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Washington State University. Downloaded on August 20,2024 at 18:53:06 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0003-1766-4316
https://orcid.org/0000-0002-0907-2241
mailto:li@mines.edu
mailto:ndantam@mines.edu
mailto:ndantam@mines.edu
https://doi.org/10.1109/LRA.2023.3327655

8304 IEEE ROBOTICS AND AUTOMATION LETTERS, VOL. 8, NO. 12, DECEMBER 2023

when configuration space penetration depth cannot be robustly
calculated.

We evaluate this algorithm on 4-DOF and 5-DOF manipu-
lators. Constructing infeasibility proofs in 4D is two orders of
magnitude faster than [13], and in 5D, we can construct infea-
sibility proofs within a few minutes, which was not previously
possible. We further discuss scalability issues in Section VII.
Finally, in evaluated scenes with feasible plans through narrow
passages, our framework found plans two orders of magnitude
faster than a baseline of RRT-Connect.

II. RELATED WORK

A. Completeness and Sampling-Based Motion Planning

Achieving completeness in motion planning is desired but
difficult since we typically do not have an explicitly defined
configuration space, especially in high dimensions. Sampling-
based motion planning is an effective and widely applicable
strategy that incorporates typically random sampling to search
a metric configuration space [5], [6], [7], [8], [10], [16], [17],
[18], [19], [20], [21], [22], [23], and thus only requires a con-
figuration validity checker. However, sampling-based planners
have traditionally only offered probabilistic completeness. If
the planner times out without returning a plan, there is no
guarantee of plan non-existence, since the planner may just need
more time to find the path. This uncertainty about plan existence
poses challenges when motion planning is a sub-routine in a
higher-level planning problem [1], [2], [3], [4]. Conversely, an
asymptotically complete planner [11], will eventually return a
plan or an infeasibility proof. The infeasibility proof provides
an exact proof of plan non-existence, which could help elim-
inate some of the search branches of a higher-level planning
problem. Asymptotic completeness brings us one step closer to
completeness but does not guarantee termination in finite time.

B. Infeasibility Proofs

Some previous works construct exact path non-existence
guarantees. [24] proves path non-existence for single, rigid
objects in a 2D or 3D workspace to guarantee stable grasp. [25]
considers the specific problem of a rigid body passing through a
narrow gate. [26] constructs alpha-shapes in the obstacle region
to query the connectivity of two configurations, which works
for up to 3-dimensional configuration spaces. These methods
do not apply to general manipulators’ configuration spaces.
[27] proposed a method to construct infeasibility proofs by
growing facets in the obstacle region and then identifying closed
polytopes from the set of facets. This method is computationally
expensive due to the combinatorial identification step, scaling
only to 3-DOF manipulators within reasonable time limits.

There are also methods that provide approximate path non-
existence guarantees. Visibility [28] and sparsity [29] based
planners achieve high coverage of the free space, so if no plan
is found when the algorithm terminates, the problem may be
considered infeasible [30]. Deterministic sampling-based mo-
tion planning also provides certain guarantees on plan non-
existence [31], [32], [33], [34]. If no plan is found, then either
no solution exists or a solution exists only through some nar-
row passages. Previous works have also applied learning-based
methods to predict infeasible plans [35], [36], [37], [38], [39].
However, these methods do not provide definitive plan nonexis-
tence guarantees.

This letter uses an overall structure similar to previous work
in [12], [13], in which we proposed a sampling and learning
based infeasibility proof construction algorithm. The algorithm
runs in parallel with a sampling-based motion planner. First,
using the base planner’s search tree or graph, the algorithm learns
and samples a manifold. Then, the manifold is triangulated and
each facet of the resulting triangulation is checked to ensure
the triangulation is entirely in Cobs. This letter uses a similar
strategy and adapts new computational geometry tools [14] in the
triangulation step for faster computation to extend the algorithm
to higher dimensions.

C. Narrow Passage Motion Planning

Narrow passages pose challenges for sampling-based motion
planners due to low sampling probabilities. Various strategies
aim to address this issue [40], [41], [42]. The extreme case
of narrow passages is when obstacles in the workspace cause
the configuration space narrow passage to become occluded
(making the problem infeasible), which sampling-based motion
planning has traditionally not addressed. This work integrates
infeasibility proof construction with a narrow passage motion
planner SDCL [15] so that when plans exist in narrow passages,
they are quickly found, and when the plans become infeasible,
the algorithm switches to constructing the infeasibility proof.

III. PROBLEM DEFINITION

We focus on kinematic motion planning and aim to achieve
asymptotic completeness—that is, to return a plan when one
exists and to return an infeasibility proof when no plan exists.
A motion planning problem [43] consists of a configuration
space C of dimension n, a start configuration qstart, and a goal
configuration qgoal. The configuration space C is the union of the
disjoint obstacle region Cobs and free space Cfree. For high-DOF
manipulators,Cobs andCfree are implicitly defined using a validity
checking function that takes a configuration as input, returns
false if the configuration collides with obstacles, and returns true
otherwise. Both qstart and qgoal are in Cfree. When a plan exists,
the output is a plan σ such that σ[0, 1] ∈ Cfree, σ[0] = qstart,
σ[1] = qgoal. When there is no feasible plan, the output is an
infeasibility proof M. An infeasibility proofM is a closed
manifold that lies entirely in the obstacle region and separates
qstart and qgoal [13].

A. Requirements and Assumptions

We have additional requirements on the configuration space.
First, the obstacle region of the configuration space must be
entirely ε-blocked, meaning the obstacle region cannot be in-
finitesimal. Also, we require a Euclidean configuration space
instead of a metric space (e.g. SE(3)) since the triangulation of
the manifold requires Euclidean space. We further define virtual
obstacles at the configuration space boundaries so that we can
treat boundaries the same as obstacle regions. More details on
these requirements are in [11]. Finally, the current algorithm
applies to kinematic motion planning only.

IV. BACKGROUND

We briefly summarize the key prior results in this section,
including SDCL [15], infeasibility proof construction [13], and
Coxeter triangulation [14], [44].

Authorized licensed use limited to: Washington State University. Downloaded on August 20,2024 at 18:53:06 UTC from IEEE Xplore. Restrictions apply.

LI AND DANTAM: SCALING INFEASIBILITY PROOFS VIA CONCURRENT, CODIMENSION-ONE, LOCALLY-UPDATED COXETER TRIANGULATION 8305

Fig. 2. 2D demonstration shows manifold tracing results and triangulation construction. Line segments of the Rn triangulation intersect the manifold, and the
intersecting points form a triangulation of the manifold.

A. Sample-Driven Connectivity Learning From Roadmaps

SDCL integrates sampling-based planning and machine
learning to effectively solve difficult motion planning problems
with narrow passages [15]. There are two main steps in SDCL:
learning a manifold and sampling the manifold.

In the learning step, SDCL uses a partially-constructed prob-
abilistic roadmap G as training data for a binary classifier. All
samples in G that are connectable to qgoal are one class, and
all other samples are the other class. The result of learning is
a configuration space manifold F (q) (q ∈ C), i.e., the decision
boundary of the classifier, that separates the start and goal.

In the sampling step, SDCL finds points on the manifold
by solving a non-linear optimization problem to minimize the
manifold function’s absolute value, |F (q)|. Sampled manifold
points in Cfree offer potential connections between the start and
goal components, providing a strong heuristic when planning in
configuration spaces with narrow passages [15].

B. Infeasibility Proofs

The algorithm in [13] generates infeasibility proofs in four
main steps. The first two steps are similar to learning and
sampling a manifold in SDCL (see Section IV-A). After training
the manifold, the algorithm verifies that the manifold is com-
pletely contained in Cobs to confirm it is an infeasibility proof.
Directly checking the manifold itself poses challenges since Cobs
is often implicitly defined. Instead, the algorithm generates a
triangulation of the manifold using tangential Delaunay com-
plexes [45], [46] and checks the facets of the triangulation using
configuration space penetration depth. When all facets are in
the obstacle region, the triangulation is an infeasibility proof
according to its definition.

C. Coxeter Triangulation

The authors in [14] introduce the manifold tracing algorithm
which uses Rn Coxeter triangulation (call it CTR in the follow-
ing) to triangulate a manifold. The inputs to manifold tracing
are an m-dimensional smooth manifold in R

n and seed points
on the manifold. The result is a set of k-dimensional simplices
that intersect the manifold (where k = n−m, known as the
codimension), forming a manifold triangulation later on.

To avoid explicit construction of every point ofCTR (which is
infinite), the algorithm uses a permutahedral representation [14].
This permutahedral representation supports queries for ver-
tices, faces, and cofaces of a simplex, and locating points on
simplices (locate(q)). Faces are lower-dimensional simplices
contained within a simplex. For example, s.face(1) returns
all the 1-simplices of a simplex s, which are edges. Cofaces

are all simplices that contain the given simplex. For example,
s.coface(n) returns all the n-simplices in which simplex s is
a face. The Rn triangulation size is adjustable with a parameter
λT , which also determines the final manifold triangulation size.
In Fig. 2, λT is each triangle’s height. Smaller triangles produce
intersection points that are closer to each other, i.e., a finer
manifold triangulation.

V. ALGORITHM

In this section, we discuss the integration of SDCL, Coxeter
Triangulation, and infeasibility proof construction. Our overall
algorithm operates by integrating SDCL and infeasibility proof
construction (see Fig. 1). The algorithm has three components
and correspondingly three parallel threads. One thread runs a
PRM, which provides the samples we use as data for training
the manifold. The SDCL thread uses these samples to train the
manifold and then samples points on the manifold. If we sample
any Cfree points on the manifold, we add these points back to
the PRM. Lastly, the infeasibility proof construction thread uses
the manifold and manifold points from the SDCL thread for
triangulation (see Sections V-A and V-B) and checking (see
Section V-C). If the triangulation passes the check, then we have
an infeasibility proof. If the PRM finds a plan, we return the plan.
The algorithm terminates with either a plan or an infeasibility
proof. This algorithm structure ensures quick narrow passage
motion planning by running infeasibility proof construction and
SDCL in separate threads.

A. Codimension One Coxeter Triangulation

The proof construction thread takes the most recent manifold
and triangulates it. Previous work [12] used tangential Delau-
nay complexes [45], [46] to triangulate the manifold, How-
ever, triangulation with tangential Delaunay complexes requires
post-processing to fix inconsistencies, which scales poorly to
higher dimensions, and tangential Delaunay complexes does not
parallelize well. In this work, we employ and adapt the Coxeter
triangulation algorithm [14]. In the manifold tracing algorithm,
we implement a new method to calculate intersection points
between line segments and the manifold. We also parallelize
the manifold tracing iterations. Then, we use the output from
manifold tracing to concurrently construct the triangulation and
at the same time locally fix the triangulation with elastic updates
when there are parts of it in Cfree.

1) Manifold Tracing: We collect all points sampled on the
manifold into a set Qseeds in the SDCL thread. The inputs to
manifold tracing are the learned manifold and Qseeds. In our
case, the learned manifold is always (n-1)-dimensional for C

Authorized licensed use limited to: Washington State University. Downloaded on August 20,2024 at 18:53:06 UTC from IEEE Xplore. Restrictions apply.

8306 IEEE ROBOTICS AND AUTOMATION LETTERS, VOL. 8, NO. 12, DECEMBER 2023

Algorithm 1: Parallel Manifold Tracing.

in R
n. This means the codimension is always one and the

output simplices are always 1-simplices, i.e., line segments.
Algorithm 1 describes the parallelized manifold tracing.

Two features enable concurrent implementation of manifold
tracing. First, the final collection of intersecting line segments
produced by manifold tracing is unaffected by the graph traversal
order because all neighboring line segments are interconnected
in CTR (see Fig. 2(b)) and would be visited regardless of
the ordering. Second, we have a set of manifold points Qseeds
from the SDCL thread. Consequently, we parallelize mani-
fold tracing by starting from multiple seeds Qseeds in different
threads. This parallelization facilitates triangulation in higher
dimensions.

While finding intersecting line segments in Algorithm 1, we
must also calculate the intersection points. We find intersection
points between line segments and the manifold using two-point
bracketing [47]. A line segment intersects the manifold if and
only if its endpoints are on opposite sides and thus produce
manifold function values with opposite signs. Given our man-
ifold function F (q) and line segment endpoints v1 and v2, an
intersection exists only when F (v1) ∗ F (v2) < 0. We find the
intersection by updating bracket v1,v2 using the false-position
method [47], [48] (see Algorithm 2). Fig. 2(b) shows theCTR in
the 2D scene, and Fig. 2(c) shows the result of manifold tracing,
including the line segments and their intersection points with the
manifold.

When manifold tracing returns, the manifold must be closed.
We do not provide any boundaries of the manifold to do manifold
tracing, so if the manifold is not closed, the graph traversal
would not terminate because there would always be neighboring
line segments in CTR that intersect the infinitely extending
manifold. In this sense, the triangulation step also proves that
the manifold is closed, which is one of the requirements in the
definition of an infeasibility proof.

Algorithm 2: Calculate Intersection Point.

Algorithm 3: Construct Triangulation.

2) Construct Triangulation: We next construct the triangu-
lation using the line segments and corresponding manifold in-
tersection points output from manifold tracing. Since we always
have codimension-one manifolds, we develop a faster routine
to construct the triangulation composed of (n-1)-simplices. The
algorithm supports efficient parallel construction of the triangu-
lation by incorporating a concurrent hash table [49], [50] (line 1)
for data shared between threads. We also perform elastic updates
(see Section V-B) to fix areas on the triangulation that leave the
obstacle region.

Algorithm 3 describes the triangulation construction. We start
by iterating through the set of line segments. For each line
segment, we find its n-dimensional cofaces by querying the
permutahedral representation of CTR, which is an n-simplex
in CTR for R

n configuration space. Different line segments
may have the same n-dimensional coface, since an n-simplex
has n ∗ (n− 1) lines segments. We save each n-simplex and its
corresponding line segments’ intersection points to the concur-
rent hash table (line 4). The intersection points of ann-simplex’s
line segments with the manifold form facets of the triangulation.
By grouping all the facets, Algorithm 3 constructs the manifold
triangulation. Fig. 2(d) shows the manifold triangulation in
the 2D scene. Next, we discuss the elastic update procedure
to correct Cfree triangulation vertices.

B. Elastic Triangulation Updates

We locally update the triangulation to ensure containment in
Cobs. When iterating through line segments, we check whether
manifold intersection points are in Cobs. An intersection point
in Cfree means that part of the manifold is in Cfree. Generally,
we could retrain a new manifold and re-triangulate. However,
to save the cost of another triangulation, we locally update the
triangulation to correct intersection points in Cfree. Conceptually,
these updates “stretch” the vertices of the existing triangulation

Authorized licensed use limited to: Washington State University. Downloaded on August 20,2024 at 18:53:06 UTC from IEEE Xplore. Restrictions apply.

LI AND DANTAM: SCALING INFEASIBILITY PROOFS VIA CONCURRENT, CODIMENSION-ONE, LOCALLY-UPDATED COXETER TRIANGULATION 8307

Fig. 3. Elastic triangulation in a 2D configuration space. In the first transition,
the triangulation of the previous manifold is fixed using the projection point on
the new manifold; In the second transition, a vertex of a facet’s bisection is fixed.

Algorithm 4: Construct Triangulation.

to fit a newly trained manifold as if the edges are elastic, so we
call this procedure an elastic update.

Algorithm 4 summarizes the elastic update, and Fig. 3 illus-
trates a 2D case. For an intersection point in Cfree, the elastic
update adds the point to roadmap G (line 1), then projects the
intersection point onto the most recent manifold by solving the
following optimization problem (line 3),

min
qm

abs (F (qm))

s.t. qm ∈ C , (1)

where F is the function of the learned manifold, and qm is the
projected manifold point. This formulation is the same as that
used to sample manifold points in SDCL. If we successfully
project the point qm and it is in Cobs, we use this projected point
to replace the original intersection point in the final triangulation.
If qm is instead in Cfree, we add this projected point to roadmap
G (line 5), retrain the manifold (line 6, line 7), and re-project
the point until we find a projected manifold point in Cobs or the
projection fails. If projection fails, which means the optimization
problem in (1) fails to solve, then q is ∅ and we re-triangulate.
The updated triangulation remains valid since we only change
the positions of vertices and not the connections of the edges.
The resulting triangulation may have crossings but it is not a
concern as long as all facets are in Cobs, which we discuss next.

C. Facets Bisection and Checking

We need to check if the manifold triangulation is contained in
Cobs. The triangulation produces a set of (n-1)-simplices (facets).
Previous work [13] used configuration space penetration depth

to check each facet, which is computationally expensive and
not always possible to robustly determine, especially in high
dimensions. In this work, we propose a simplex bisection method
that recursively checks all vertices of decomposed simplices
until all vertices are enclosed in a hyper-ball with a small radius
εb. This method is analogous to the local planner interpolation
used to add new samples to, e.g., PRMs and RRTs [7], [51].
Here, we extend line segment checks to simplex checks.

We divide a simplex into smaller simplices with recursive
subdivision [52]. Recursive subdivision picks two vertices of
the simplex each time and cuts through the midpoint of the two
vertices and all other vertices, which bisects a simplex. We pick
the longest edge to cut each time, which provides better quality
simplices and requires fewer checks [53].

While bisecting and checking simplices, we locally update
bisected simplices’ vertices in the same way as the elastic update
during triangulation (Algorithm 4, Fig. 3). If the elastic update
succeeds, then we avoid another iteration of triangulation and
checking facets. If elastic update fails, then we re-triangulate
with a smaller λT (smaller Rn triangulation size) and check the
facets again. If all simplices are checked and are in Cobs, then we
have an infeasibility proof.

To summarize, we have three threads running in parallel and
exchanging data. The SDCL thread takes the planning graph
from the PRM, learns a manifold, and samples the manifold.
The proof construction thread takes the manifold and samples,
generates a triangulation, and checks the triangulation. Also,
both the SDCL thread and the proof construction thread provide
samples to the planning graph which helps planning in narrow
passages. The algorithm outputs a plan or an infeasibility proof
given long enough time.

VI. EXPERIMENTS

In this section, we show the experimental results of the algo-
rithm in multiple serial manipulator scenes. We run experiments
in 4-DOF scenes to compare the current algorithm with previous
work. We perform experiments in 5-DOF scenes to show how
the algorithm scales in higher dimensions. We also show how
the algorithm performs in feasible plan scenes. We run 30 trials
for each experiment.

To leverage parallelism in several parts of our algorithm, we
run our experiment on a multi-core system with NVIDIA TU102
GPU and a dual CPU AMD EPYC 7402 with 24 cores per
CPU. We adapt PRM [7] in OMPL [9] to run in parallel with
our infeasibility proof construction thread and SDCL thread.
We solve the nonlinear optimization problems using sequen-
tial least-squares quadratic programming (SLSQP) [54], [55]
in NLopt [56]. We adapt the Coxeter triangulation module in
GUDHI [57] for triangulation. We train the RBF-kernel SVM us-
ing ThunderSVM [58], which supports GPU-accelerated SVM
training. We use the concurrent hash table in libcuckoo [49], [50]
when parallelizing the triangulation step. We check collisions
using the Flexible Collision Library [59]. We use Miniball to
calculate the smallest enclosing ball when dividing and checking
simplices [60]. We model robot kinematics using Amino [61].

A. 4-DOF Experiments

The 4-DOF experiments setup is the same as in [13] for us to
compare the results. We have two scenes, one with a shoulder-
elbow robot and the other with a SCARA robot [62]. Fig. 4(a)

Authorized licensed use limited to: Washington State University. Downloaded on August 20,2024 at 18:53:06 UTC from IEEE Xplore. Restrictions apply.

8308 IEEE ROBOTICS AND AUTOMATION LETTERS, VOL. 8, NO. 12, DECEMBER 2023

Fig. 4. 4-DOF and 5-DOF Experiment Scenes.

TABLE I
RUNTIME RESULTS FOR 4-DOF AND 5-DOF MANIPULATORS, MEAN (S)

±STD, AVERAGED OVER 30 TRIALS

“Cox” is for coxeter triangulation, including manifold tracing and construction of

triangulation. “Check” is for the bisection and checking.

and (c) show these scenes. Experimental results are in Table I.
In both scenes, we use λT = 0.1 for Rn triangulation. The mean
runtime is two orders of magnitude faster than the result in [13].

B. 5-DOF Experiments

We setup two 5-DOF experimental scenes. The first uses a
manipulator structure similar to the PackBot [63] (see Fig. 4(d)).
The goal in the scene is to reach inside the shelf. In this scene,
we use λT = 0.1 for Rn triangulation. The second scene uses a
manipulator similar to the Universal robot [64] (see Fig. 4(b)).
Since the Universal robot is 6-DOF, we use a round end-effector
and fix the last joint to make it 5-DOF. The goal is to reach the
target position in a clustered tabletop environment. In this scene,
we use λT = 0.08 for Rn triangulation. Both scenes’ runtime
results are in Table I.

C. Feasible Plan Experiments

We also run experimental scenes where plans exist in narrow
passages. The goal is not to thoroughly compare with other
motion planners, since these results would be similar to the
results of using SDCL with PRM without the infeasibility proof
part, which is shown in previous work [15]. Instead, we wish
to demonstrate that this new algorithm structure maintains the
capability to efficiently solve these problems.

We modify the 5-DOF infeasible scenes to make narrow
passages such that plans exist in the scene but are still hard
to find. For the tabletop environment in Fig. 4(b), we move the
cylinders to create more room for the end-effector to pass. For
the shelf environment in Fig. 4(d), we move the two obstacles
further away from each other and the arm. We also use the same
modified Fig. 4(b) scene with a square-end effector for setting
up a 6-DOF narrow passage problem.

TABLE II
EXPERIMENTAL RESULTS FOR FEASIBLE PLAN EXPERIMENTS

TABLE III
PARALLEL ALGORITHM SPEEDUP TEST OVER 50 TRIALS

We run 30 trials for each scene. Our algorithm successfully
terminates with a plan for each scene and each trial. Table II
shows the results. We compare our planner with RRT-Connect
as a baseline to show these are actually difficult, narrow passage
motion planning problems. We give a 300 seconds time limit to
run RRT-Connect with the three scenes. Our results are similar
to [15], significantly outperforming the baseline planner. This
experiment also shows that attempting to construct an infeasi-
bility proof does not significantly impact planning performance
in scenes with feasible plans.

VII. DISCUSSION, ANALYSIS AND FUTURE WORK

A. Parallel Algorithm Analysis

As computational hardware continues to scale primarily
through parallel rather than serial performance, algorithmic
designs leveraging parallelism are increasingly critical. Prior
work has used multi-core CPUs to parallelize sampling [23],
[65] or nearest neighbor search [66], GPUs for nearest neighbor
search [67] and collision checking [68], and FPGAs for collision
checking [69]. In our algorithm, we have parallelized all the main
components. This includes manifold learning, utilizing off-the-
shelf GPU-based SVM training [58]; manifold sampling; the
triangulation step, facilitated by adapting Coxeter triangulation;
and the facet bisection and checking step.

Our key development is a concurrent variation of Coxeter
triangulation to leverage available hardware parallelism. The ge-
ometric structure of Coxeter triangulation enables concurrency.
Compared to tangential Delaunay complexes, the calculation
of Coxeter triangulation is primarily element-wise, leveraging
the manifold’s information effectively without relying on (and
synchronizing with) neighboring points.

We analyze our parallel Coxeter triangulation using the con-
ventional work/span approach—where work represents time
to execute if on a single processor, and span represents time
to execute if given unlimited processors [70]—to determine
speedupSp as the ratio of sequentialTs and parallelTp execution
Sp = Ts/Tp. The main iterations in Algorithms 1 and 3 are all
parallel, meaning span is the length of a single iteration and
offering a theoretical linear speedup in number of processors,
Ts/Tp = p/s.

However, the speedup is usually less than linear in practice
due to the critical sections, including those in the concurrent
hash tables [49], [50]. We empirically test speedup using 6, 12,
24, and 48 cores (see Table III). The algorithm is faster with
more cores but the speedup is less than linear. As the number

Authorized licensed use limited to: Washington State University. Downloaded on August 20,2024 at 18:53:06 UTC from IEEE Xplore. Restrictions apply.

LI AND DANTAM: SCALING INFEASIBILITY PROOFS VIA CONCURRENT, CODIMENSION-ONE, LOCALLY-UPDATED COXETER TRIANGULATION 8309

of threads increases, contention intensifies due to shared data
structures, leading to a decrease in speedup.

B. Hyperparameters

An important parameter in the triangulation step is λT , which
controls the size of the R

n triangulation. Smaller λT produces
a finer triangulation of the manifold, which also takes longer
to complete. λT is adjusted online after each dividing and
checking step. If the bisection and checking step fails, it means
there are failed elastic updates, and the manifold needs a finer
triangulation, so we need to triangulate the manifold again
with a smaller λT . We multiply λT with a constant between
0 and 1 after each failed dividing and checking step. In all
experiments, we use the value 0.9. With an iteratively smaller
λT , the algorithm finishes the infeasibility proof construction
eventually. Choosing a proper value for λT is also important and
affects the total runtime. If λT is too small, then it takes longer
for the triangulation step to complete. If λT is too large, then
the algorithm needs to run many more iterations of triangulation
and checking to reduce λT before it returns, which also increases
overall runtime.

Other hyperparameters are εb, the facets’ smallest enclosing
ball radius, and τ , in Algorithm 2. εb must be small enough to
capture the “thinnest” obstacle region, which is related to the
definition of ε-blocked, but not too small since it would increase
the number of bisections. If εb is too large, the algorithm may
produce false positive results. The value of τ determines how
close the triangulation vertices are to the manifold. Using a τ
too large may cause discrepancies between the triangulation and
the manifold. We use 0.05 in all experiments.

C. Scalability

Our current algorithm and implementation scales to find
infeasibility proofs for 5-DOF manipulators, though it also is
capable of quickly finding plans in feasible scenes for higher-
dimensional manipulators. In the 5-DOF experimental results,
checking the triangulation’s facets takes a large portion of the to-
tal runtime. We also run preliminary tests on 6-DOF scenes, with
a similar setup in Fig. 4(b). The algorithm completes learning,
sampling, and triangulation until all vertices of the triangulation
are in Cobs, which on average takes less than 40 seconds with
λT = 0.08. However, our current approach to bisect and check
facets dominates running time and did not complete within 120
minutes. Further scaling of infeasibility proof construction will
require a faster collision checking backend [71] or alternative
approaches to facets checking, which remains an area of future
work. Another potential way to scale this method is by using
sub-space decomposition [30], [72], [73], where infeasibility
proofs can be constructed in lower dimensions and remain valid
in higher dimensions.

VIII. CONCLUSION

In this work, we introduced an asymptotically complete
motion planner that combines SDCL and infeasibility proof
construction. We enhance the Coxeter triangulation with elastic
updates during triangulation and checking, utilizing parallel
computing for faster processing. Our experiments in 4-DOF
and 5-DOF scenarios demonstrate the algorithm’s efficiency. For
future work, infeasibility proofs can be applied in a multi-query
setting for addressing higher-level planning problems [1], [2],
[3], [4].

REFERENCES

[1] O. Ben-Shahar and E. Rivlin, “Practical pushing planning for rearrange-
ment tasks,” IEEE Trans. Robot. Automat., vol. 14, no. 4, pp. 549–565,
Aug. 1998.

[2] S. Cambon, R. Alami, and F. Gravot, “A hybrid approach to intricate
motion, manipulation and task planning,” Int. J. Robot. Res., vol. 28, no. 1,
pp. 104–126, 2009.

[3] J. Ota, “Rearrangement of multiple movable objects-integration of global
and local planning methodology,” in Proc. IEEE Int. Conf. Robot. Au-
tomat., 2004, pp. 1962–1967.

[4] G. Wilfong, “Motion planning in the presence of movable obstacles,” Ann.
Math. Artif. Intell., vol. 3, no. 1, pp. 131–150, 1991.

[5] S. M. LaValle, “Rapidly-exploring random trees: A new tool for path
planning,” Comput. Sci. Deptartment, Iowa State Univ., Ames, IA, USA,
Tech. Rep. TR-98-11, 1998.

[6] S. Karaman and E. Frazzoli, “Sampling-based algorithms for optimal
motion planning,” Int. J. Robot. Res., vol. 30, no. 7, pp. 846–894, 2011.

[7] L. E. Kavraki, P. Svestka, J.-C. Latombe, and M. H. Overmars, “Probabilis-
tic roadmaps for path planning in high-dimensional configuration spaces,”
IEEE Trans. Robot. Automat., vol. 12, no. 4, pp. 566–580, Aug. 1996.

[8] J. J. Kuffner and S. M. LaValle, “RRT-connect: An efficient approach to
single-query path planning,” in Proc. IEEE ICRA. Millennium Conf. Int.
Conf. Robot. Automat. Symposia Proc., 2000, pp. 995–1001.

[9] I. A. Şucan, M. Moll, and L. E. Kavraki, “The open motion planning li-
brary,” IEEE Robot. & Automat. Mag., vol. 19, no. 4, pp. 72–82, Dec. 2012.

[10] A. Shkolnik and R. Tedrake, “Sample-based planning with volumes in
configuration space,” 2011, arXiv:1109.3145.

[11] S. Li and N. T. Dantam, “Exponential convergence of infeasibility proofs
for kinematic motion planning,” in Algorithmic Foundations Robotics XV.
Berlin, Germany: Springer, 2023, pp. 294–311.

[12] S. Li and N. T. Dantam, “Learning proofs of motion planning infeasibility,”
in Proc. Robot.: Sci. Syst., 2021.

[13] S. Li and N. T. Dantam, “A sampling and learning framework to prove mo-
tion planning infeasibility,” Int. J. Robot. Res., vol. 42, no. 10, pp. 938–956,
2023.

[14] S. Kachanovich, “Meshing submanifolds using coxeter triangulations,”
Ph.D. dissertation, COMUE Université Côte d’Azur, Nice, France, 2019.

[15] S. Li and N. T. Dantam, “Sample-driven connectivity learning for motion
planning in narrow passages,” in Proc. IEEE Int. Conf. Robot. Automat.,
2023, pp. 5681–5687.

[16] N. M. Amato and Y. Wu, “A randomized roadmap method for path and
manipulation planning,” in Proc. IEEE Int. Conf. Robot. Automat., 1996,
pp. 113–120.

[17] I. A. Şucan and L. E. Kavraki, “A sampling-based tree planner for systems
with complex dynamics,” IEEE Trans. Robot., vol. 28, no. 1, pp. 116–131,
Feb. 2012.

[18] D. Hsu, R. Kindel, J.-C. Latombe, and S. Rock, “Randomized kinodynamic
motion planning with moving obstacles,” Int. J. Robot. Res., vol. 21, no. 3,
pp. 233–255, 2002.

[19] L. Janson, E. Schmerling, A. Clark, and M. Pavone, “Fast marching tree:
A fast marching sampling-based method for optimal motion planning in
many dimensions,” Int. J. Robot. Res., vol. 34, no. 7, pp. 883–921, 2015.

[20] A. M. Ladd and L. E. Kavraki, “Fast tree-based exploration of state space
for robots with dynamics,” in Algorithmic Foundations of Robotics VI.
Berlin, Germany: Springer, 2004, pp. 297–312.

[21] Y. Li, Z. Littlefield, and K. E. Bekris, “Asymptotically optimal sampling-
based kinodynamic planning,” Int. J. Robot. Res., vol. 35, no. 5,
pp. 528–564, 2016.

[22] M. Otte and E. Frazzoli, “RRTX: Asymptotically optimal single-query
sampling-based motion planning with quick replanning,” Int. J. Robot.
Res., vol. 35, no. 7, pp. 797–822, 2016.

[23] E. Plaku, K. E. Bekris, B. Y. Chen, A. M. Ladd, and L. E. Kavraki,
“Sampling-based roadmap of trees for parallel motion planning,” IEEE
Trans. Robot., vol. 21, no. 4, pp. 597–608, Aug. 2005.

[24] A. Varava, J. F. Carvalho, F. T. Pokorny, and D. Kragic, “Caging and path
non-existence: A deterministic sampling-based verification algorithm,” in
Proc. 18th Robot. Res.Int. Symp., 2020, pp. 589–604.

[25] J. Basch, L. J. Guibas, D. Hsu, and A. T. Nguyen, “Disconnection proofs
for motion planning,” in Proc. ICRA. IEEE Int. Conf. Robot. Automat.,
2001, pp. 1765–1772.

[26] Z. McCarthy, T. Bretl, and S. Hutchinson, “Proving path non-existence us-
ing sampling and alpha shapes,” in Proc. IEEE Int. Conf. Robot. Automat.,
2012, pp. 2563–2569.

[27] S. Li and N. T. Dantam, “Towards general infeasibility proofs in mo-
tion planning,” in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst., 2020,
pp. 6704–6710.

Authorized licensed use limited to: Washington State University. Downloaded on August 20,2024 at 18:53:06 UTC from IEEE Xplore. Restrictions apply.

8310 IEEE ROBOTICS AND AUTOMATION LETTERS, VOL. 8, NO. 12, DECEMBER 2023

[28] T. Siméon, J.-P. Laumond, and C. Nissoux, “Visibility-based probabilistic
roadmaps for motion planning,” Adv. Robot., vol. 14, no. 6, pp. 477–493,
2000.

[29] A. Dobson and K. E. Bekris, “Sparse roadmap spanners for asymptoti-
cally near-optimal motion planning,” Int. J. Robot. Res., vol. 33, no. 1,
pp. 18–47, 2014.

[30] A. Orthey and M. Toussaint, “Sparse multilevel roadmaps for high-
dimensional robotic motion planning,” in Proc. IEEE Int. Conf. Robot.
Automat., 2021, pp. 7851–7857.

[31] M. S. Branicky, S. M. LaValle, K. Olson, and L. Yang, “Quasi-randomized
path planning,” in Proc. IEEE Int. Conf. Robot. Automat., 2001, pp. 1481–
1487.

[32] L. Janson, B. Ichter, and M. Pavone, “Deterministic sampling-based mo-
tion planning: Optimality, complexity, and performance,” Int. J. Robot.
Res., vol. 37, no. 1, pp. 46–61, 2018.

[33] M. Tsao, K. Solovey, and M. Pavone, “Sample complexity of probabilistic
roadmaps via ε-nets,” in Proc. IEEE Int. Conf. Robot. Automat., 2020,
pp. 2196–2202.

[34] D. Dayan, K. Solovey, M. Pavone, and D. Halperin, “Near-optimal multi-
robot motion planning with finite sampling,” IEEE Trans. Robot., vol. 39,
no. 5, pp. 3422–3436, Oct. 2023.

[35] A. M. Wells, N. T. Dantam, A. Shrivastava, and L. E. Kavraki, “Learning
feasibility for task and motion planning in tabletop environments,” IEEE
Robot. Automat. Lett., vol. 4, no. 2, pp. 1255–1262, Apr. 2019.

[36] D. Driess, O. Oguz, J.-S. Ha, and M. Toussaint, “Deep visual heuristics:
Learning feasibility of mixed-integer programs for manipulation plan-
ning,” in Proc. IEEE Int. Conf. Robot. Automat., 2020, pp. 9563–9569.

[37] D. Driess, J.-S. Ha, R. Tedrake, and M. Toussaint, “Learning geometric
reasoning and control for long-horizon tasks from visual input,” in Proc.
IEEE Int. Conf. Robot. Automat., 2021, pp. 14298–14305.

[38] D. Driess, J.-S. Ha, and M. Toussaint, “Learning to solve sequential
physical reasoning problems from a scene image,” Int. J. Robot. Res.,
vol. 40, no. 12–14, pp. 1435–1466, 2021.

[39] S. A. Bouhsain, R. Alami, and T. Simeon, “Learning to predict action
feasibility for task and motion planning in 3D environments,” in Proc.
IEEE Int. Conf. Robot. Automat., 2023, pp. 3736–3742.

[40] H.-Y. Yeh, S. Thomas, D. Eppstein, and N. M. Amato, “UOBPRM: A
uniformly distributed obstacle-based PRM,” in Proc. IEEE/RSJ Int. Conf.
Intell. Robots Syst., 2012, pp. 2655–2662.

[41] D. Hsu, T. Jiang, J. Reif, and Z. Sun, “The bridge test for sampling narrow
passages with probabilistic roadmap planners,” in Proc. IEEE Int. Conf.
Robot. Automat., 2003, pp. 4420–4426.

[42] Z. Sun, D. Hsu, T. Jiang, H. Kurniawati, and J. H. Reif, “Narrow passage
sampling for probabilistic roadmap planning,” IEEE Trans. Robot., vol. 21,
no. 6, pp. 1105–1115, Dec. 2005.

[43] S. M. LaValle, Planning Algorithms. Cambridge, U.K.: Cambridge Univ.
Press, 2006.

[44] H. S. Coxeter, “Discrete groups generated by reflections,” Ann. Math.,
vol. 35, no. 3, pp. 588–621, 1934.

[45] J.-D. Boissonnat and A. Ghosh, “Manifold reconstruction using tangen-
tial delaunay complexes,” Discrete Comput. Geometry, vol. 51, no. 1,
pp. 221–267, 2014.

[46] J.-D. Boissonnat, F. Chazal, and M. Yvinec, Geometric and Topological
Inference (Cambridge Texts in Applied Mathematics). Cambridge, U.K.:
Cambridge Univ. Press, 2018, pp. 113–160. [Online]. Available: https:
//hal.inria.fr/hal-01615863

[47] S. D. Conte and C. De Boor, Elementary Numerical Analysis: An Algo-
rithmic Approach. Philadelphia, PA, USA: SIAM, 2017.

[48] Anonymous, “The Nine Chapters on the Mathematical Art.,” Commentary
by Liu Hui, 263.

[49] B. Fan, D. G. Andersen, and M. Kaminsky, “Memc3: Compact and
concurrent MemCache with dumber caching and smarter hashing,”
in Proc. 10th USENIX Symp. Networked Syst. Des. Implementation, 2013,
pp. 371–384.

[50] X. Li, D. G. Andersen, M. Kaminsky, and M. J. Freedman, “Algorithmic
improvements for fast concurrent cuckoo hashing,” in Proc. 9th Eur. Conf.
Comput. Syst., 2014, pp. 1–14.

[51] S. M. LaValle and J. J. Kuffner, “Randomized kinodynamic planning,” Int.
J. Robot. Res., vol. 20, no. 5, pp. 378–400, 2001.

[52] D. W. Moore, Simplicial Mesh Generation with Applications. Ithaca, NY,
USA: Cornell Univ., 1992.

[53] C. S. Petersen, B. R. Piper, and A. J. Worsey, “Adaptive contouring of
a trivariate interpolant,” in Geometric Modeling: Algorithms and New
Trends, GE Farin, Ed., Philadelphia, Pennsylvania, PA, USA: SIAM, 1987,
pp. 385–395.

[54] D. Kraft, “A software package for sequential quadratic programming,”
Institut für Dynamik der Flugsysteme, Oberpfaffenhofen, DLR German
Aerosp. Center, Inst. Flight Mechanics, Koln, Germany, Tech. Rep.
DFVLR-FB 88-28, Jul. 1988.

[55] D. Kraft, “Algorithm 733: TOMP–fortran modules for optimal control
calculations,” Trans. Math. Softw., vol. 20, no. 3, pp. 262–281, 1994.

[56] S. G. Johnson, “The NLopt nonlinear-optimization package,” 2023. [On-
line]. Available: http://github.com/stevengj/nlopt

[57] The GUDHI Project, “GUDHI User and Reference Manual,” GUDHI
Editorial Board, 2015. [Online]. Available: http://gudhi.gforge.inria.fr/
doc/latest/

[58] Z. Wen, J. Shi, Q. Li, B. He, and J. Chen, “ThunderSVM: A fast SVM
library on GPUs and CPUs,” J. Mach. Learn. Res., vol. 19, pp. 797–801,
2018.

[59] J. Pan, S. Chitta, and D. Manocha, “FCL: A general purpose library for
collision and proximity queries,” in Proc. IEEE Int. Conf. Robot. Automat.,
2012, pp. 3859–3866.

[60] B. Gärtner, “Fast and robust smallest enclosing balls,” in Proc. 7th Annu.
Eur. Symp. Algorithms, 1999, pp. 325–338.

[61] N. T. Dantam, “Robust and efficient forward, differential, and inverse
kinematics using dual quaternions,” Int. J. Robot. Res., vol. 40, no. 10/11,
pp. 1087–1105, 2021.

[62] H. Makino, “Assembly robot,” US Patent 4,341, 502, Jul. 1982.
[63] “Packbot 510,” 2023. [Online]. Available: https://www.flir.com/products/

packbot/?vertical=ugs&segment=uis
[64] UniversalRobots, “UR5 collaborative robot arm: Flexible and lightweight

cobot,” 2023. [Online]. Available: https://www.universal-robots.com/
products/ur5-robot/

[65] J. Ichnowski and R. Alterovitz, “Parallel sampling-based motion planning
with superlinear speedup,” in Proc. IEEE/RSJ Int. Conf. Intell. Robots
Syst., 2012, pp. 1206–1212.

[66] J. Ichnowski and R. Alterovitz, “Concurrent nearest-neighbor searching
for parallel sampling-based motion planning in SO(3), SE(3), and Eu-
clidean spaces,” in Algorithmic Foundations Robot. XIII. Berlin, Germany:
Springer, 2020, pp. 69–85.

[67] J. Pan, C. Lauterbach, and D. Manocha, “Efficient nearest-neighbor com-
putation for GPU-based motion planning,” in Proc. IEEE/RSJ Int. Conf.
Intell. Robots Syst., 2010, pp. 2243–2248.

[68] J. Pan and D. Manocha, “GPU-based parallel collision detection for fast
motion planning,” Int. J. Robot. Res., vol. 31, no. 2, pp. 187–200, 2012.

[69] S. Murray, W. Floyd-Jones, Y. Qi, D. J. Sorin, and G. D. Konidaris, “Robot
motion planning on a chip,” in Proc. Robot.: Sci. Syst., 2016.

[70] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to
Algorithms. Cambridge, MA, USA: MIT Press, 2022.

[71] L. Montaut, Q. L. Lidec, J. Sivic, and J. Carpentier, “Collision detection
accelerated: An optimization perspective,” in Proc. Robot.: Sci. Syst., 2022.

[72] O. Salzman, M. Hemmer, B. Raveh, and D. Halperin, “Motion planning
via manifold samples,” Algorithmica, vol. 67, no. 4, pp. 547–565, 2013.

[73] R. Shome, K. Solovey, A. Dobson, D. Halperin, and K. E. Bekris, “dRRT*:
Scalable and informed asymptotically-optimal multi-robot motion plan-
ning,” Auton. Robots, vol. 44, no. 3/4, pp. 443–467, 2020.

Authorized licensed use limited to: Washington State University. Downloaded on August 20,2024 at 18:53:06 UTC from IEEE Xplore. Restrictions apply.

https://hal.inria.fr/hal-01615863
https://hal.inria.fr/hal-01615863
http://github.com/stevengj/nlopt
http://gudhi.gforge.inria.fr/doc/latest/
http://gudhi.gforge.inria.fr/doc/latest/
https://www.flir.com/products/packbot/{?}vertical$=$ugs&segment$=$uis
https://www.flir.com/products/packbot/{?}vertical$=$ugs&segment$=$uis
https://www.universal-robots.com/products/ur5-robot/
https://www.universal-robots.com/products/ur5-robot/

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 900
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00111
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00083
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00063
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

