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Intuitive Control of a Robotic Arm and Hand System with
Pneumatic Haptic Feedback

Sihui Li∗, Raagini Rameshwar∗, Ann Marie Votta∗, Cagdas Onal

Abstract—Robot teleoperation is a transformative field of study
that can enable workers to safely perform tasks in dangerous
environments. In this paper, we present our work towards
a teleoperation system with safe, realistic force feedback for
intuitive control of a robotic arm and anthropomorphic robotic
hand as its end effector. The system interfaces with the user via
a novel data glove. This glove detects the state of the hand using
inertial measurement units (IMUs) and custom curvature sensors,
and employs pneumatic muscles to provide force feedback. The
glove itself weighs only 58 grams, and the glove combined with
IMUs and tether weighs 213 grams. We use this glove to control
a Kinova Jaco robotic arm and a custom 3D printed hand
with embedded force sensors. We tested the functionality of this
system in a grasp quality experiment and a full teleoperation
test. With feedback, users were able to differentiate between
good and poor grasps with 95% and 74% accuracy respectively,
and some reported detecting objects slipping from their grasp. In
user testing with the full system, all users were able to complete
a series of pick-and-place tasks with only 5 minutes of training,
with an average time of under 50 seconds per task.

I. INTRODUCTION

Robotic systems are becoming indispensable on factory
floors [1], in hospitals [2], and for space and ocean exploration
[3][4]. As robots become stronger and more durable, they
are replacing humans for remote or dangerous tasks. State-
of-the-art autonomy is often not sufficient to handle tasks in
unpredictable environments. As such, these tasks benefit from
teleoperation systems in which a human remotely and safely
controls the robot [5][6]. The success of these teleoperation
systems depends on both the control method and the existence
of feedback [7][8].

In this paper, we propose a novel teleoperation system using
soft robotic principles, building on our previous work [9].
A data glove system captures user movements using inertial
measurement units (IMUs) and custom curvature sensors that
detect finger bending using the signal between an infrared LED
and receiver. The user movements are used to control a 6
degree of freedom (DoF) robotic arm (Kinova Jaco) and five-
fingered anthropomorphic hand. The robotic hand is equipped
with soft force sensors that detect grasp forces, which are
transmitted to the user through soft pneumatic actuators. The
result is a safe and intuitive system that can be used with very
little training (Figure 1).
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Fig. 1. In the proposed teleoperation system, a user wears the haptic glove and
controls commercial 6-DoF robotic arm and a robotic hand as its end-effector.

A. Existing Work

1) Control Methods: There are two main categories of con-
trol methods for teleoperation. One category uses small hand-
held controllers such as joysticks, keyboards, computer mice,
and touch screens [5]. Due to limited degrees of freedom,
hand-held controllers pose a challenge when controlling robots
with many degrees of freedom, such as robotic arms. In [10],
joystick control of a robotic arm requires unintuitive mode
changes between position, orientation, and gripping control.

The other category of controllers captures natural body
movements to control a robot, resulting in a more intuitive
system. Motion capture systems use cameras, body markers,
and computer vision to detect user position [11]. While the
measurements are accurate and the control seems intuitive, it
results in a large, stationary, and expensive system. In contrast,
data gloves are wearable devices that use sensors such as
accelerometers and gyroscopes to track a users movement [12].
Data gloves are becoming an increasingly popular method
of teleoperation for their potentially lightweight and portable
form factors.

In [13], for example, the authors present a novel data glove
using 18 IMUs to track a users arm and finger movements. The
glove is relatively inexpensive and lightweight, but has several
drawbacks. Firstly, the authors require that a users body stays
stationary, which can result in an awkward user experience.
Secondly, high-quality IMUs are expensive, and inexpensive
IMUs are highly prone to drift. In contrast, our teleoperation
system detects a user’s palm position and orientation relative
to their shoulder, allowing their body to adjust during teleop-
eration. In addition, using curvature sensors to measure finger
positions reduces the number of IMUs to three.

Although controllers that capture users body movements
seem more intuitive, [14] found that when relying solely on
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visual feedback, users performed better with the peg controller
than with a data glove to control Cartesian pose of a non-
anthropomorphic arm and end-effector for a peg-in-hole task.
We hypothesize that when the controller more closely resem-
bles a human body, users expect similar feedback sensations,
such as touch, during the teleoperation experience.

2) Feedback Methods: Haptic feedback is an important
aspect of an effective and usable teleoperation system [7].
There are several modes of haptic feedback, which vary in
effectiveness depending on the application. Tactile feedback
is transmitted using vibration, temperature, or pressure close
to the skin and usually indicates initial contact with an object.
Force feedback is transmitted by applying a force to a user’s
body and can indicate a resistive force, such as grasping an ob-
ject [15]. In some cases, this force can stop a user’s movement,
for example by preventing their fingers from closing [16]. In
others, the user’s movements are not hindered by the force
[17]. Force feedback is an effective way to transmit quality-
of-grasp to a user, and enhances grasp stability and allows for
more delicate manipulation [8].

In [18], the authors present the RML glove, used to control
a mobile robot. As the robot approaches an object, the user’s
finger movements, which control the speed of the robot, are
limited to prevent collisions of the robot with other objects.
Another glove, presented in [19], uses three servos to provide
3-DoF feedback to one fingertip. In both these cases, the
force feedback method is bulky and expensive. Additionally,
attaching tendons to a users fingers poses a risk of injury if
the system pulls the user’s fingers past their comfort level.
Our proposed force feedback method is pneumatically driven
using very low pressures, making it a lightweight and safe
alternative.

The ExoPhalanx [16] is a haptic glove that uses a shape
memory alloy (SMA) driven brake to stop the user’s fingers
from bending once they pass a given threshold. This device
is soft, wearable, and non-bulky, but locks the users fingers
into a fixed position while transmitting feedback. Another
glove, proposed in [20], uses soft inflatable chambers under the
user’s fingers to provide initial contact feedback. Our proposed
system detects and relays contact for the duration of a grasp,
enabling more accurate object manipulation.

Table I compares our current teleoperation system with
many of the systems described above. We chose parameters
that are important to a teleoperation system, such as weight,
cost, time to learn, and capability. Some of the papers did not
report pick-and-place test times, and others did not perform a
pick-and-place task.

B. Contributions

We present a novel teleoperation system that controls a 6-
DoF robotic arm with an attached anthropomorphic robotic
hand using an intuitive control scheme and safe force feed-
back. The system is lightweight (213g), inexpensive (less
than $150), and user friendly, while still being effective.
Using principles of soft robotics, it accurately reads external
grasping forces and safely transfers them to a user. Our specific
contributions are as follows:

Fig. 2. The teleoperation system consists of three main subsystems connected
through ROS (Robot Operating System). The haptic glove captures user
movements and ROS passes this data to the Jaco arm and robotic hand. The
robotic hand captures grasp forces which are passed back to the haptic glove.

1) Pneumatic haptic muscles that are lightweight, safe, and
provide realistic kinesthetic feedback to a user.

2) Soft magnetic force sensors embedded in a compliant
robotic hand used for teleoperation.

3) Custom optical curvature sensors that accurately detect
finger curvature in a lightweight, cost-effective form
factor.

4) An intuitive teleoperation system based on IMUs where
the user may move freely and comfortably during oper-
ation.

In the remainder of this paper, we will present the system
overview (II), design and validation of each subsystem (III),
and user testing (IV).

II. SYSTEM OVERVIEW

The proposed teleoperation system consists of three major
subsystems: a custom-built haptic glove worn by the user, a
commercially available robotic arm, and a 5-fingered robotic
hand mounted to the arm’s end effector. The three subsystems
are connected through ROS (Figure 2), which passes informa-
tion across the whole system.

The haptic glove reads the user’s hand position and orien-
tation relative to their shoulder, as well as the curvature of
their fingers. The pose is converted to joint angles for the
robotic arm, and the finger curvatures map to joint angles on
the robotic hand. As the user moves their arm and fingers, the
robotic arm and hand mirror the user’s movements.

The robotic hand contains soft force sensors at the fingertips
that detect grasp forces during teleoperation. These forces
are converted to signals that activate pneumatic actuators
mounted to the haptic glove. As the actuators inflate, the user
experiences a grasp sensation that mirrors the robotic hand’s
forces.

The system as a whole offers the user a telepresence
experience, in which the movements and sensations of the
robot system are directly associated with their own.

III. SUBSYSTEM DESIGN

A. Haptic Glove

The haptic glove is a soft wearable glove system with
sensors and actuators for data collection and force feedback.
It consists of curvature sensors, IMUs (Adafruit BNO055),
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Name Teleoperation
Method

Feedback
Method

Weight of
Glove Cost Training Time

Given
Avg Time to Complete
Pick-And-Place

Joystick Modal
Change [21] Joystick Visual Only N/A Not Reported 5 minutes ∼450s

Inertial Motion
Capture [11]

CyberGlove, IMUs,
Motion Capture Visual Only 540g ∼$13,000 Not Reported Not Reported

IMMU Data
Glove [13] IMUs Visual Only >110g $200 Not Reported Not Reported

RML Glove [18] Exoskeleton
with Encoders

DC Motor and
Cable System 180g Not Reported 5 minutes N/A (Not Pick-And-Place)

ExoPhalanx [16] Cyberglove,
Motion Capture SMA Brake >540g >$13,000 Not Reported N/A (No Pick-And-Place

Performed)

CICG [22] Commercial Data
Glove, IMUs

Vibration
Motors 300g ∼$3,500 N/A Not Reported

Electro-Tactile
Teloperation [23]

P5 Virtual Reality
Glove

Electro-tactile
Feedback 28g >$250 5 minutes Not Reported

Pneumatic Haptic Glove
(this work)

Custom Data
Glove, IMUs

Pneumatic
Haptics 213g <$150 5 minutes 50s

TABLE I
COMPARISON OF TELEOPERATION SYSTEMS

Fig. 3. The haptic glove system consists of curvature sensors and haptic
muscles mounted to the glove and three IMUs secured with adjustable bands.
The IMUs are placed on the user’s palm, forearm, and upper arm.

and pneumatic haptic muscles. The IMUs mount to the user’s
palm, forearm, and upper arm with adjustable bands and report
the relative angles of the user’s arm and wrist (Figure 3).

1) Curvature Sensors: To detect the curvature of the user’s
fingers, we use optical curvature sensors mounted to the
fingers of the haptic glove. Each sensor contains an infrared
LED and receiver connected by a black tube to block external
light. When the user’s finger is straightened, the LED and
receiver are directly facing each other and the signal from the
receiver is high. When the user’s finger is curled, the signal
is low, as shown in Figure 4. Because there is no resistive
component to this sensor, the readings do not suffer from
drift and other inconsistencies. We map the signal from each
finger to a corresponding finger position on the robotic hand,
thus mirroring the user’s movements.

2) Haptic Muscles: The goal of our feedback system is
to be as realistic as possible when conveying grasp forces.
When a person picks up a cup, their fingers are prevented
from closing past the cup’s surface. This force that prevents a
person’s fingers from curling further is what the haptic muscles
replicate.

The haptic muscles are pneumatic actuators manufactured
from heat sealable plastic. The plastic is cut and sealed into
a pouch, then rolled into a toroid shape to fit around the
user’s fingers. When deflated, the haptic muscles do not hinder
the user’s movements, as the plastic is fairly soft. As they

Fig. 4. When the user’s finger is straight, light from the LED reaches the
receiver, resulting in a high signal. As the user gradually curves their fingers,
the light is blocked, resulting in a low signal. This provides an accurate reading
of the user’s finger curvature.

inflate around the user’s fingers, they exert a gentle force that
straightens the knuckle and feels similar to the force exerted by
a real grasped object (Figure 5. By regulating the pressure with
solenoid valves and pulse-width modulation (PWM) control,
we apply varying levels of pressure (from 0 to 5psi) to indicate
a weaker or stronger grasp.

To measure the force exerted on a user’s fingers, we
mounted a haptic muscle to a 2-link 3D-printed finger with
a freely rotating joint, and tied the fingertip to a load cell as
shown in Figure 5(b). As we pressurized the haptic muscle by
increasing the PWM input, the finger attempted to straighten
and pulled on the string, applying a measurable force on the
load cell. Figure 5(c) shows the force versus PWM values
for one cycle of increasing and decreasing pressure. Because
increasing the pressure involves pushing air into the actuator,
and decreasing pressure lets the air leak into the atmosphere,
the haptic muscle deflates slower than it inflates, causing
the observed hysteresis. Given the results from User Study
1 (Grasp Quality Test) presented in Section IV, it is clear that
this discrepancy is not noticeable during operation. Both the
increasing and decreasing pressures were accurate enough to
communicate grasp quality to the users.
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Fig. 5. (a) The deflated haptic muscles (left) are soft and do not hinder user
movement. When inflated (right), they tighten around the user’s finger and
apply a gentle restoring force. (b) To measure the change in force from the
muscle given a change in PWM signal, we tied the end of a 2-link 3D-printed
finger to a load cell and incremented the PWM signal over time. When the
muscle is deflated, the finger remains bent. When it inflates, the finger tries
to straighten and pulls the string, applying an upward force on the load cell.
(c) As the PWM signal is increased (blue) and decreased (orange), the force
correspondingly increases and decreases.

B. 5-fingered Robotic Hand

1) Hand design: The 5-fingered anthropomorphic robotic
hand (Figure 6) is a modified version of the Open Bionics
V1.1 Ada Hand, an open-source 3D-printable hand used as a
research platform for prosthetic hands. The back of the hand
is printed in PLA, while the palm and fingers are printed
in Ninjaflex, a flexible filament produced by Ninjatek. The
softer palm gives the hand some compliance while grasping,
and the flexible hinges in the fingers allow for an underactu-
ated tendon-driven system with realistic motions. Because the
fingers are partially compliant, they conform to many object
shapes without needing to account for various grasp types.
Therefore, it is possible to grasp many different objects using
only a few grasp motions. This decreases the complexity for
the user, and the complexity of the system as a whole.

The hand uses four linear actuators (Actuonix PQ12-R) to
flex its fingers: one each for the first, second, and third fingers,
and one for both the fourth and fifth fingers. The fingers extend
passively when tension is removed from the tendons.

2) Soft Force Sensors: We modified the original Ada hand
for our teleoperation requirements by adding soft force sensors
at the fingertips. These sensors, shown in Figure 6, are located
in a small chamber embedded in the fingertip. At the bottom
of the chamber is a custom PCB (developed in [24]) with a
3-axis hall-effect sensor, and at the top is a small magnet. As
the finger tip deforms, the magnet moves in the x, y, or z
direction, causing a change in the magnetic field read by the
hall-effect sensor. As this deformation is caused by an external
force on the fingertip, we can use this sensor to measure the
relative force on each fingertip from grasping objects.

The sensor chamber has 2 walls on the left and right sides,
and on the front and back a small ninjaflex band connecting

Fig. 6. Our 5-fingered anthropomorphic hand is printed out of PLA (black)
and flexible Ninjaflex (gold). Embedded in each finger is a soft force sensor
consisting of a Hall-Effect sensor and a magnet. As the fingers encounter
grasping forces, the magnet shifts relative to the Hall-Effect sensor. Reading
these shifts provides force measurements in three axes.

Fig. 7. Pushing the front of the fingertip in the normal direction against a
load cell results in a linearly related change in force between the load cell and
normal force. The result is similar when the side of the fingertip is pushed
against the load cell in the shear direction.

the walls to prevent buckling (Figure 6). This geometry results
in high stiffness in the normal direction and low stiffness in
the shear direction. This was ideal for our purposes, as we
wanted the normal direction to be strong enough to grasp
heavy objects, and the shear direction flexible enough to still
see a change in shear force when lifting lighter objects. In
Figure 7, we pressed the tip of the finger against a load
cell, first in the normal direction (front of the fingertip) and
then in the shear direction (side of the fingertip). Due to the
geometry of the hand and how it grasps objects, the shear force
was much higher than the normal force during real grasping
applications, so we chose to use the shear force to drive the
haptic feedback.

C. Teleoperation Scheme

To demonstrate the usability of our robotic hand and haptic
glove, we designed a teleoperation scheme using the Kinova
Jaco arm. The goal is to build an intuitive mapping between
the Jaco arm (6 DoF) and the human arm (7 DoF). Existing
work on teleoperating the Jaco arm falls into three main
categories: teleoperation with a handheld device [10], teleoper-
ation with motion sensors [25], and teleoperation with visual
interface [26], [27]. In our previous work, we experimented
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Fig. 8. We tested four teleoperation schemes using three mounting points in
simulation (Gazebo). Users played a game in which they attempted to reach
a given end-effector pose and orientation (green) as quickly as possible.

Fig. 9. To calculate the latency of teleoperation, we teleoperate the robot in
one axis and find the time difference between the robot and user’s highest
and lowest points. The calculated latency is 1.07s.

with joint-to-joint mapping of Jaco arm, which requires users
to limit their own motion because the Jaco has fewer DoF. In
this work we explore end-effector (ee) mapping.

From a pilot study run in simulation testing various config-
urations and teleoperation schemes (Figure 8), we found that
mounting the Jaco upright on the table was the easiest to use.
We also found that ee mapping is fairly intuitive, since the
user focuses more on the ee than the pose of the robot. We
thus apply an end-effector mapping scheme to the physical
robot using a table-top mounting position.

Since we have a different robotic hand from the Jaco arm’s
original gripper, Jaco’s default inverse kinematic (IK) solver
is no longer applicable. To solve the current IK, we use the
trac ik package [28] with a modified robot definition file to
fit our needs. In our pilot study, sttesting with IMUs mounted
to a user’s arm, we found that separating the position and
orientation for solving IK resulted in fewer invalid solutions.
The first three joints of the Jaco arm are used to analytically
calculate position and the last three joints are used to iter-
atively calculate orientation. After we have the joint angle
solutions, the lower level control of joints is based on joint
velocities for smoother results. A complete process of this IK
mapping is described in the pseudocode in the Appendix.

To validate the teleoperation scheme and quantify possible
delays, we collected data while teleoperating the arm to move
up and down. Figure 9 compares the human and robot’s tra-
jectory along the z-axis. The robot’s trajectory reaches further
than the human’s trajectory because of the extended length of
the robot’s wrist and hand. The robot trajectory follows the
human trajectory with a time delay of 1.07 seconds, which is
primarily caused by limited joint velocities, which were set
for safety reasons. We set the first three joints velocity limits
to 10 degrees/s and the last three joints velocity limits to 50
degrees/s.

Fig. 10. When grasping a soft object, the force sensor reading is noticeably
smaller than when grasping a rigid object.

IV. EXPERIMENTS

A. Teleoperation with Grasp Detection Validation

To validate the functionality of the force feedback, we
experimented with grasping both soft and rigid objects while
plotting the force sensor readings from the hand. Figure 10
shows that as the robot’s fingers contact the object, the mag-
nitude of the force sensor readings increases. When grasping a
rigid box, the force sensor readings are noticeably larger than
when grasping a soft teddy bear. Additionally, the signal is
more disturbed and we observe a peak at the start of grasping.
This is due to the dynamics and compliance of the soft force
sensors. When grasping a rigid object like the box, the sensors
impact the object quickly, causing the first signal peak. Then,
any small movements within the sensors or of the object
result in observable signal changes. When grasping something
soft like the teddy bear, the sensors sink into the object
and experience less of an impact. After grasping, random
movements of the object/finger are absorbed by the object
and we see a smooth signal. These results show a potential to
distinguish between soft and rigid objects during teleoperation.

B. User Study I: Grasp Quality

We devised an experiment using only the data glove and
the robotic hand to test the system’s ability to convey grasp
quality with the soft force sensors and haptic muscles. A user
wore the haptic glove and looked at a computer screen, which
showed live footage of a table surface. One of the authors
held the wrist of the robotic hand, and the user could see
the hand and some objects on the screen. The author placed
the robotic hand over an object so the object was partially
or fully occluded, the user closed their fingers to grasp the
object, and we asked them whether the grasp was good or bad.
After 1 to 3 minutes of practice, we recorded the true grasp
quality and whether the user’s guess was correct or incorrect.
We repeated this test for four objects both with and without
haptic feedback, performing a total of 12 grasps per object (6
with and 6 without feedback). We then turned off the camera
to test a user’s ability to determine grasp quality using only
the pneumatic feedback. During the blind test, we asked users
to rate the grasp between 1 and 3, where 1 was a poor grasp,
3 was a strong grasp, and 2 was a medium grasp, where the
object would slip if a small disturbance was applied. Each
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No Haptic Feedback With Haptic Feedback
Good Grasp, Correct 66/91 (72.53%) 97/102 (95.1%)
Good Grasp, Incorrect 25/91 (27.47%) 5/102 (4.9%)
Bad Grasp, Correct 54/106 (50.94%) 71/96 (73.96%)
Bad Grasp, Incorrect 52/106 (49.06%) 25/96 (26.04%)

TABLE II
GRASP QUALITY TEST WITH VISUAL FEEDBACK

Reported Grasp Quality
1 2 3

Actual Grasp Quality
1 49 23 10
2 2 11 14
3 2 8 61

TABLE III
GRASP QUALITY TEST WITH NO VISUAL FEEDBACK

object was grasped 6 times for this test. In all tests we tried
to maintain an even balance of good and bad grasps.

C. Results of User Study I

The results of the two experiments are presented in the
Tables II and III. For the first test using the camera, we
found that without feedback, users were able to identify good
grasps 73% of the time and poor grasps 51% of the time.
With feedback, they correctly identified good grasps with
95% accuracy and poor grasps with 74% accuracy. Users also
responded more quickly and confidently with the feedback,
and reported that without the feedback they were randomly
guessing for many of the trials.

For the blind test, users were 60% accurate at identifying
poor grasps and 86% accurate at identifying good grasps. They
were also fairly accurate at reporting a middle-level quality of
grasp; when users said the grasp was a two, the grasp turned
out to be either a one or a two 81% of the time. For both a
one or a two grasp, the object slipped at some point during the
grasp, either upon initial lifting or after the object was lifted
and experienced a small disturbance. Users were more likely
to label a middle-level grasp as a 1 than a 3, which is ideal
for teleoperation purposes.

During these tests, some users reported feeling an object
slipping from their grasp, which highlights the capabilities of
the soft force sensors as well as the haptic muscles. The soft
sensors were able to detect slippage, and the corresponding
pressure decrease in the haptic muscle conveyed the slip to
the user.

D. User Study II: System Teleoperation

To test the intuitive nature of the teleoperation system and
effect of feedback on the entire system, we performed user
testing with a series of pick-and-place tasks. Users were told
to pick up a given object and place it in a nearby box as
quickly as possible. After giving each user five minutes of
practice time to become accustomed to the system, we tested
them with five objects, each with and without haptic feedback,
for a total of ten tasks. The five objects were a soft teddy bear,
a robot-shaped stress toy, a paper cup, a cardboard box, and an
empty plastic water bottle. These ten tasks were randomized

Fig. 11. To test our system, users picked up 5 randomly ordered objects, each
with and without feedback, and placed them in a box. Objects are placed on
the table one at a time.

Fig. 12. User study results with/without feedback for experienced user and
inexperienced user. The center point is the average time to complete the pick-
and-place task for an object, and the error bars represent the standard deviation
among users.

to account for user learning during the test, and the position
and orientation of each object were kept constant for all trials.
We recorded the time required to complete each task, starting
from when we told the user to begin and ending when the
object landed in the box.

1) Results of User Study: During the user study, all subjects
completed every task. In the presented data, we define an
inexperienced user as someone who was introduced to the
system for the first time during user testing. An experienced
user had worked with the system during development or for
previous publications, and had about 30 minutes to 2 hours of
practice before user testing. Analysis of the experienced and
inexperienced user’s data showed that subjects’ teleoperation
skills improve with practice.

When analyzing the time taken for tasks with and without
haptic feedback, we found significant differences between
the inexperienced and experienced users. The average task
completion times were greatly reduced for some objects,
as were the standard deviations. We also observe that in
the experienced users, 2 objects benefited from the haptic
feedback and the other objects had similar average times.
The inexperienced users struggled more with controlling the
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robotic arm, so the benefits of the haptic feedback are less
visible. The average time to complete a pick-and-place task
for all users was 50 seconds.

V. DISCUSSION AND FUTURE WORK

In this paper, we discuss the development and testing of
a novel data glove with pneumatic feedback for intuitive
teleoperation. The glove uses a combination of IMUs and
optical curvature sensors to determine the user’s hand and arm
pose, and maps this to the position of a robotic arm and hand.
The hand is equipped with soft hall-effect force sensors that
provide force feedback to the user through pneumatic haptic
muscles on the glove.

Through user testing, we found that the system is intuitive
and usable with very little training. With only 1 to 3 minutes
of training, users were able to use the haptic feedback to
accurately judge grasp quality and object slipping. Addition-
ally, both experienced and inexperienced users were able to
complete a a total of 10 pick-and-place tasks with objects of
various shapes and sizes, taking an average of 50 seconds per
task.

One of the challenges in quickly completing the pick-and-
place task was the configuration of the hand. The thumb is
not opposable, and thus approaches objects at an angle. This
makes grasping more difficult, as without practiced finger
coordination the thumb can easily misalign the objects. This
can be addressed in the future by adding an additional degree
of freedom to the thumb, allowing users to adjust the angle of
their grasp as desired.

The success rate of all users in completing pick-and-place
tasks, as well as the accuracy of grasp quality detection, proves
the effectiveness of our system. The next step in this project
is to increase the capability of the robotic hand and explore
different modes of feedback to add to the haptic glove. There is
also potential to convey object size and stiffness, which would
significantly improve a user’s capacity to perform increasingly
complex tasks.
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VI. APPENDIX

Algorithm 1 Teleoperation based on end-effector mapping
with separated position and orientation
Input: Upper arm, Lower arm, and Wrist IMU readings.
Output: Joint angles of the Jaco arm.

Initialization :
1: Initialize IK and FK solvers, IMUs, and the joint velocity

controller. Home the Jaco arm.
2: while not terminated by user do
3: Get current robot joint angle readings, get current IMU

readings.
Calculate first three joints :

4: Calculate human wrist position with upper arm length,
lower arm length, upper arm IMU reading, and lower
arm IMU reading.

5: Map human wrist position to robot workspace to get
robot ee position.

6: Solve first three joints with robot ee position (analytical
solution).
Calculate last three joints :

7: Calculate robotic hand ee orientation with wrist IMU
reading and rotation matrix from human palm to robotic
hand palm.

8: Transfer robotic hand ee orientation from robot base
frame to Jaco’s third joint’s frame with FK calculated
from joints 1-3.

9: Solve for last three joints in joint 3 frame with trac ik
solver.
Send results to joint velocity controller :

10: if first three joints and last three joints have solution
then

11: Send the target joint position to joint velocity con-
troller.

12: else
13: Send zero velocities.
14: end if
15: end while
16: return Joint angles of the Jaco arm.
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