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Abstract. Many robot tasks may involve achieving visibility (such as to
observe areas of interest) or maintaining occlusion (such as to avoid dis-
turbing other agents). We generally formulate such sequential visibility
tasks for 3D worlds, termed the Park Rangers’ Problem, and we develop
an approach to solve such tasks offering completeness under certain re-
quirements. Our approach constructs an abstraction based on an exact
test for visibility between areas and multiple tests and relaxations for the
nonconvex problem of determining occlusions between areas. We apply
a constraint-based planning approach and iteratively refine the abstrac-
tion. Finally, we evaluate the approach on simulated visibility scenarios.

1 Introduction

Many robot applications involve tasks based on visibility requirements. For ex-
ample, common information acquisition scenarios such as exploration, inspec-
tion, and monitoring, require one or more robots to achieve visibility of certain
areas of interest, and safety or communication requirements may require mem-
bers of a robot team to maintain visibility of each other. Further, some tasks
may require maintaining occlusion, e.g., a household robot avoiding disrupt-
ing the home’s inhabitants during its operation or an outdoor robot remaining
hidden from animals to avoid causing them stress. Such applications with dy-
namic visibility and occlusion requirements generalize established robotics sce-
narios [9,1,19] as well as classic problems from computational geometry [2,18].

In this paper, we characterize multi-agent scenarios with sequential visibility
and occlusion requirements as the Park Rangers’ Problem, and we develop so-
lution techniques for such problems through an abstraction refinement approach
incorporating computational geometry, optimization, and constraint satisfaction.
We first formally define the Park Rangers’ Problem in terms of multiple agents
moving in a 3D workspace that must achieve a sequence of visibilities and occlu-
sions satisfying a logical specification or formal language (see section 3). Then,
we develop an approach to solve such problems (see section 4). We abstract the
environment and its visibility and occlusion properties using a subset-ordered
lattice (see subsection 4.1). While determining visibility between abstraction
elements is directly computable using computational geometry techniques, de-
termining occlusion status is more challenging, notably posing nonconvexities.
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We develop multiple tests and relaxations to address nonconvexity of occlusion
determination (see subsection 4.2) and then apply constraint-based approaches
to satisfy the sequential visibility requirements (see subsection 4.3). If a current
abstraction does not admit valid plans, we iteratively refine the abstraction (see
subsection 4.4). We show that this overall apporach is complete under certain
assumptions (see subsection 4.5). Finally, we empirically evaluate our approach
on scenarios with sequential visibility requirements (see section 5).

2 Related Work

Several works touch on the subject matter of this paper. First, there is the
classical art gallery problem [18], which is easily solvable in 2D but not the 3D
world in which many robots operate. The art gallery problem considers how to
position static “guards” in an art gallery, defined as a polyhedron, such that at
least one guard has visibility to all points in the polyhedron. The watchman route
problem generalizes the art gallery problem to moving guards where we must
find paths for agents to observe a desired set of areas [2]. In 3D graphics, several
works consider the problem of visibility. The “visibility skeleton” [7] and “visibility
complex” [8] are analytical methods for finding visibility information. These
methods have very high-polynomial running times and do not lend themselves
to planning problems, where a-priori information about relationships between
arbitrary points in a world are required. Compared to these classic formulations
and graphics results, we address cases of agents operating in a 3D world where
requirements may involve both visibility and occlusion over time.

In robotics, several works consider planning based on visibility constraints,
especially in 2D. Fletcher, Perali et al. consider a “visibility-based escort prob-
lem” [9], where a single VIP agent must be escorted by an escort robot through
a 2D environment; the VIP agent must not be seen by known enemy positions.

We note the visibility graph [12] as a seemingly-similar a motion planning
concept. However, the “visibility” in visibility graphs refers to the incidental fact
that nodes in visibility graphs must have line-of-sight to one another. Visibility
graphs do not, however, address line-of-sight visibility or occlusion information
about an entire robot world, so they are not necessarily an ideal data structure
for visibility-constrained planning.

3 Problem Definition

We find motion plans for robot teams who must satisfy visibility requirements.
For example, a team of (robot) park rangers may need to observe wildlife with-
out being seen while moving from their initial position, and we may also want,
for safety, each ranger to see at least one other ranger. We define this prob-
lem by extending the classic motion planning formulation to include visibility
information and then a sequence of general visibility and occlusion constraints.

Classically, motion planning problems consist of a configuration space C of
dimension n, with a start configuration qstart ∈ C and goal configuration qgoal ∈
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C [12]. We divide the configuration space C into Cfree, the open set free space, and
Cobs, the closed set obstacle space. Cfree and Cobs may be derived from a workspace
obstacle region Wobs, where Cfree is the set of configurations not colliding with
Wobs, and Cobs = C \ Cfree. A feasible plan is a path σ, such that σ[0, 1] ∈ Cfree,
σ[0] = qstart, and σ[1] = qgoal. We will extend this definition to now address
sequential visibility.

3.1 Visibility problems

In this paper, we extend motion planning to incorporate visibility requirements.
We consider an SE(3) robot workspace W containing obstacles that both cause
collision and occlude visibility. For this current work, we consider only opaque
(not translucent or transparent) obstacles. Specifically, workspace W consists of
disjoint workspace obstacle region Wobs and workspace free region Wfree. Con-
figurations solely in Wfree are traversable; however, visibility requirements may
further restrict valid paths.

We consider visibility based on line-of-sight between workspace points. Two
points x,y ∈ W are mutually visible if and only if the straight line between
them passes only through Wfree. Using xy to denote the line segment between
x and y, points x and y are mutually visible when xy ⊆ Wfree and mutually
occluded when xy ̸⊆ Wfree or equivalently xy ∩Wobs ̸= ∅.

3.2 Motion Planning for Sequential Visibility

We address motion planning for sequential visibility constraints. An individual
visibility constraint is based on visibility between regions or agents. For example,
consider a workspace with regions A,B and robots x, y; we then have Boolean
propositions which may be visible (x, A), visible (x, B), etc. The proposition
visible (a, b) is true when the line segment(s) between a and b are not occluded.
We extend these propositions to sequential constraints representing visibility
requirements over time. For example, we may want visible (x, y) to always hold,
visible (x, A) ∨ visible (y, A) to never hold, and visible (x, B) ∨ visible (y, B)
to hold during at least one point. Such sequential constraints are representable
as a formal language of the traces of proposition assignments satisfying the
requirements; we may specify such a formal language using notations such as
state machines or temporal logics [15].

Definition 1. We define the Park Rangers’ Problem as V = (W, C, P, Ψ), where,

– W = Wfree ∪Wobs the 2D or 3D world consisting of disjoint free space Wfree

and obstacle space Wobs. Free space Wfree is traversible and permits visibility,
while Wobs is not traversible and occludes visibility.

– C : m × m · · · × m is our multi-robot configuration space, where each m is
the position of one robot in the 2D or 3D world.

– P is the set of atomic visibility propositions—e.g., visible (α, β)—that could
be true of a particular configuration.
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– Ψ is a formal language over symbols 2P , where each symbol denotes the true
and false visibility predicates at some step and each string ψ ∈ Ψ is a trace
satisfying visibility constraints.

The goal of our planning problem is to find a path σ for the robot team
that is traversible, σ[0, 1] ∈ Cfree, and which corresponds to some string ψ ∈ Ψ ,
indicating that the path satisfies the sequential visibility requirements.

4 Algorithm

We develop an iterative abstraction, planning, and refinement approach for the
Park Rangers’ Problem (see Figure 1). First, we create a visibility abstraction T
to represent visibility and occlusion between sets of points in a 2D or 3D world W
(see subsection 4.1 and subsection 4.2). Then, we attempt to use the abstraction
T to generate a sequence of region traversals ψ that satisfy visibility specification
Ψ (see subsection 4.3). However, coarseness and indeterminate visibility of T may
not admit a valid plan ψ ∈ Ψ . For such cases when no plan ψ is found, we then
repeatedly refine T to deal with finer-grained regions (see subsection 4.4).

Start

Refine visibility details
of nodes in current plan

Plan with available nodes

Stop

Plan ok?

yes

no

Fig. 1: The general algorithm flow.

4.1 Visibility Abstraction

We construct a discrete abstraction to facilitate planning for multi-agent visibil-
ity requirements. The abstraction is a convex partitioning of world W, labeled
with visibility or occlusion information between pairs of partitions. Such as par-
titioning enables (1) lookup of instantaneous visibility or occlusion requirements
and (2) task-level planning for the sequential visibility and occlusion Ψ .
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Visibility Categories The abstraction represents visibility or occlusion be-
tween convex partitions. Two points are either visible or occluded based on
whether the line segment between them passes through only Wfree or intersects
Wobs. Two convex partitions may be fully visible or fully occluded if all points be-
tween them are visible or occluded; it is also possible that two partitions contain
both visible and occluded points (see Figure 2).

Definition 2 (Partition Visibility). Two convex partitions A,B, are either
fully visible, fully occluded, or partially visible/occluded.

V(A, B) =


FULL, ∀ (x, y) ∈ (A, B) , xy ⊂ Wfree

OCCLUDED, ∀ (x, y) ∈ (A, B) , xy ̸⊂ Wfree

PARTIAL, ∃ (x, y) ∈ (A, B) , xy ⊂ Wfree

∧∃ (x, y) ∈ (A, B) , xy ̸⊂ Wfree

Proposition 1 (Full Visibility). Two convex polytopes A,B are mutually fully
visible if and only if their convex hull does not intersect workspace obstacle region
Wobs. Denoting the convex hull of A,B as conv (A, B),

conv (A, B) ⊆ Wfree ⇐⇒ V(A, B) = FULL . (1)

Proof. Consider all line segments xy betweenA andB. Every part of conv (A, B)
must be covered by some xy, so when every xy does not intersect any occlusion,
we know conv (A, B) ⊆ Wfree. Every xy must pass only through conv (A, B),
so when conv (A, B) ⊆ Wfree, no xy can intersect an occlusion.

(a) Full visibility in 2D
between the orange-
shaded regions. The black
obstacle does not obstruct
visibility.

(b) PARTIAL visibility in
2D, between two convex
regions, the black obstacle
region partially occludes.

(c) Full occlusion in 2D,
between two convex re-
gions, the black obstacle
region fully occludes.

Fig. 2: 2D Visual representations of members of S

While any two regions must be fully visible, fully occluded, or partially visi-
ble/occluded, it is possible that our tests to check the visibility between specific
partitions will not converge (see subsection 4.2). We address such cases with
a fourth label, V(A, B) = UNKOWN, and we address both PARTIAL and
UNKOWN through iterative refinement (see subsection 4.4).
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Visibility Lattice We organize convex partitions and refinements (i.e., sub-
partitions) as a bounded visibility lattice T , offering a discrete abstraction for
planning based on visibility constraints. Lattice nodes Q are partitions of world
W. The lattice partial order relation is subset-equals (⊆). This lattice permits
inference of visibility between subset-ordered partitions.

Definition 3 (Visibility Lattice). A visibility lattice T is a tuple
T = (Q, ∩, ∪, W, ∅, S, V) forming a bounded lattice coupled with visibility in-
formation,

– Q are the lattice elements representing partitions, ∪q∈Q = W,
– ∩ (set intersection) is the lattice meet,
– ∪ (set union) is the lattice join,
– W (world) is the lattice maximum,
– ∅ (empty set) is the lattice minimum,
– S = {FULL, OCCLUDED, PARTIAL, UNKOWN} is the possible visibility,
– V : Q×Q → S represents visibility between regions.

Proposition 2 (Derived Visibility & Occlusion). Subset ordered lattice
nodes derive visibility or occlusion: when A′ ⊆ A ∧ B′ ⊆ B ∧ V(A, B) ∈
{FULL,OCCLUDED}, we know V(A′, B′) = V(A, B)).

We use Definition 3 and Proposition 2 to construct and refine a visibility
abstraction. Beginning with the lattice maximum, a refinement will subdivide
some node q ∈ Q when either q contains occlusions or for some other partition
q′, V(q, q′) ∈ {PARTIAL, UNKOWN}. We refine when the current abstraction
does not admit a valid task plan (see subsection 4.3). Though general abstraction
as convex partitions is possible, our particular refinement approach described in
subsection 4.4 represents and refines partitions using octrees.

4.2 Visibility and Occlusion Tests

While testing for full visibility is directly computable from a convex hull (see
Proposition 1), determining full or partial occlusion is more difficult, and in
particular poses nonconvex problems (see Figure 3). We test occlusion cases
through a combination of approaches (see Algorithm 1): convex decomposition
of the free space, a linear relation to test possible lines-of-sight, and a nonlinear
(nonconvex) program to fit a line-of-sight. This combination of approaches en-
ables determination of full or partial occlusion in many cases, and we addresses
the indeterminate cases (partial or unknown occlusion) through the refinement
approach of subsection 4.4.

Convex Hulls and Line-of-Sight Nonconvexity The first test checks whether
the convex hull of two partitions contains only free space (line 1). Existing algo-
rithms and libraries support testing for collisions between this convex hull and
Wobs [14]. Under Proposition 1, a convex hull only in free space implies full
visibility.
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Algorithm 1: Visibility & Occlusion Test
Input: Convex Partitions A,B
Output: Visibility or Occlusion Status

1 if conv (A, B) ∈ Wfree then return FULL;
2 else if No path A→ B in convex decomposition of conv (A, B) \Wobs then
3 return OCCLUDED;
4 else if No valid line-of-sight direction in linear relaxation then
5 return OCCLUDED;
6 else if Valid line-of-sight in nonlinear program then return PARTIAL;
7 else return UNKOWN;

A B

C D

Fig. 3: Nonconvexity of
fitting a line-of-sight be-
tween convex regions.
Dotted blue shows valid
lines. The gap (red cir-
cle) between valid line-
of-sight endpoints indi-
cates the nonconvexity.

Fig. 4: Convex de-
composition and valid
line-of-sight. The high-
lighted regions are
nodes in the graph
through which the line
passes, forming a path
p in the graph.

n(F0,1)

n(F1,2) n(F2,3)

n(F3,4)

n(F4,5)

Fig. 5: A convex deposi-
tion where the path p
admits no solution for
the linear relaxation (2)
to fit a line direction
through all plane nor-
mals (black arrows).
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Any occlusions within the convex hull of two partitions indicate that the
partitions are either fully or partially occluded. However, the direct formulation
to fit a line-of-sight is a nonconvex. Figure 3 shows an example. Consider a
line-of-sight parameterized by endpoints in each partition. This figure shows two
valid endpoints for the line-of-sight, which are separated by an area of invalid
endpoints, indicating the conconvexity. We address this nonconvexity, through
the decomposition and linear relaxation described in this section and the iterative
refinement described in subsection 4.4.

Free Space Convex Decomposition Our first step to address line-of-sight
nonconvexity is a convex freespace decomposition graph (line 2), which offers
both an initial occlusion test and supports creating the subsequent linear re-
laxation to test full occlusion. The convex freespace decomposition of two nodes
A,B ∈ Q is a convex decomposition D of conv(A,B)\Wobs. A convex freespace
decomposition graph is a graph G = (N,E) where the nodes N are the individ-
ual convex spaces in D, and edges E exist between nodes in N when the nodes
share a common face (see Figure 4). Any line-of-sight A,B must necessarily pass
through adjacent nodes of N . We test this necessary condition via graph search
on G for path p starting in A and ending in B. If no path p exists, then A and B
are fully occluded. Otherwise when we find such a path p, we proceed to linear
relaxation and full nonlinear program described below.

Linear Relaxation to Test Occlusion Next, we develop linear relaxations
for fitting line-of-sight that offer necessary conditions for visibility (line 4). In
other words, when these linear relaxations admit no solution, we have shown full
occlusion. Consider as described above path p through convex decomposition G.
A line-of-sight passing through p is parameterizable by origin point o and direc-
tion vector v. Fitting both o and v yields nonconvexities such as in Figure 3.
However, we observe necessary conditions from G and p producing a linear re-
laxation. First, we identify along p a set of hyperplanes (lines in 2D or planes in
3D worlds) that the line-of-sight must cross through the same direction. Second,
we identify a set of halfspaces containing p, (determined by lines in 2D or planes
in 3D worlds) in which the line-of-sight must fully reside. We describe each of
these linear constraints below.

Our relaxed constraint for the line-of-sight to cross hyperplanes in desired
directions ensures valid angles between the line-of-sight and each hyperplane
normal n (see Figure 5). Each angle must be within interval

(
−π

2 ,
π
2

)
, linearly

expressible as a positive inner product, v ·n > 0, where v is a decision variable
and each n is constant. The crossing hyperplanes and normals n come from G
and p. For any consecutive regions i, i+1 along p, the line-of-sight must cross the
facet (hyperplane) between those regions in the direction of i to i + 1, yielding
constraints,

v · n(Fi,i+1) > 0, ∀i , (2)

where n(Fi,i+1) is the normal vector of facet Fi,i+1
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Our relaxed constraint for the line-of-sight to lie within halfspaces checks that
two points along the line are both within the halfspace. We consider one point
as origin o and another point as direction and magnitude v (i.e., v need not be
a unit vector). Each halfspace H is bordered by hyperplane n(H) = d(H), so
that each point x in the halfspace satisfies linear constraint x · n(H) < d(H).
The necessary containing halfspaces arise from pairs of regions along p, including
source A and destination B. For each pair of regions a and b, we identify half
spaces as each region boundary through which the line-of-sight does not cross
(i.e., boundaries that do not form facets used in (2)). The constraints are,

o · n(Ha,i) < d(Ha,i), ∀i
(o+ v) · n(Hb,j) < d(Hb,j), ∀j ,

(3)

where Ha,i are the non-crossing boundaries of convex region a and Ha,i are the
non-crossing boundaries of convex region b.

The necessary condition for partial visibility is that there exists some path
p where for every pair of regions a, b, a solution exists for constraints (2) and
(3). Thus, if for every path p, we find some pair of regions a, b that admits no
solution to the constraints, we may conclude regions A and B are fully occluded.

o+ t0,1n

o+ t1,2n
o+ t2,3n

o+ t3,4n

Fig. 6: Another 2D convex decomposition, annotated with variables from the
nonlinear program to fit a line-of-sight.

Nonlinear Program to Test Partial Visibility When the previous tests do
not prove occlusion, we test for partial visibility by attempting to solve the non-
linear program for line-of-sight (line 6). Consider a line-of-sight parameterized
as x = o+ tv, where x is any point on the line, o is a fixed point on the line, v is
a direction vector, and t is a scalar factor. We determine line parameters o and
v by constructing the nonlinear program from path p through convex decom-
position G. As with the linear relaxation, the line-of-sight must cross through
successive facets Fi,i+1 along p, and we now further (nonlinearly) constraint the
line-of-sight to be contained with the facet Fi,i+1. We define the point xi,i+1

on the facet Fi,i+1 as xi,i+1 = o+ ti,i+1v, introducing additional decision vari-
able ti,i+1. Each point xi,i+1 must lie on its facet’s hyperplane, introducing the
constraints,

xi,i+1︷ ︸︸ ︷
(o+ ti,i+1v) · n(Fi,i+1) = d(Fi,i+1), ∀i . (4)
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Each point must further lie within boundaries of the facet, meaning it is con-
tained in the halfspaces parallel to v and perpendicular to each edge e of Fi,j ,
introducing constraints,

xi,i+1︷ ︸︸ ︷
o+ ti,i+1v <

halfspace normal︷ ︸︸ ︷
e× v , ∀i, ∀e ∈ edges(Fi,i+1) . (5)

A solution to (4) and (5) produces an unobstructed line-of-sight, meaning
that the two partitions are partially occluded. If the nonlinear program does not
converge to a valid solution, then we have an unknown case. We handle both
partial and unknown visibility through our iterative refinement procedure.

4.3 Task Planning

In this section we describe our task planning approach. First we summarize key
background on Linear Temporal Logic (LTL) and Satisfiability Modulo Theo-
ries (SMT), which are the logical formalism and reasoning we use to describe
constraints for robot plans. Then we describe the constraint construction for
visibility problems.

Background on SMT and LTL

Linear Temporal Logic (LTL) We specify visibility requirements Ψ using co-
safe Linear Temporal Logic (LTL). Classically, LTL formulae define ω-languages
(over infinite strings), and the co-safe LTL subset we employ addresses finite
string requirements [11]. We summarize LTL semantics for membership of string
π in the language of LTL formula ϕ. We say π ⊨ ϕ to indicate that π holds in ϕ,
and say that π consists of symbols σ0, σ1, σ2, . . . where each σi is a member of
2AP . The notation πk means the suffix of π starting at k.

Definition 4 (LTL Semantics).
– For all π, π ⊨ true and π ⊭ false.
– For an atomic proposition p ∈ AP , π ⊨ p if and only if p ∈ σ0 and π ⊨ ¬p

if and only if p /∈ σ0
– π ⊨ ϕ1 ∧ ϕ2 if and only if π ⊨ ϕ1 and π ⊨ ϕ2
– π ⊨ ϕ1 ∨ ϕ2 if and only if π ⊨ ϕ1 or π ⊨ ϕ2
– π ⊨ ϕ1Uϕ2 there is some k ≥ 0 such that πk ⊨ ϕ2 and πi ⊨ ϕ1 for 0 ≤ i < k

Co-safe LTL languages are distinguished by a finite prefix that marks a string
as being in the language, followed by an infite suffix which does not affect the
string’s membership. For convience, we define two additional shorthand opera-
tors and their mappings to co-safe LTL. Practically always (■) means an expres-
sion holds for the finite prefix and practically eventually (♦) means an expression
holds at some point during the prefix. We mark the end of the prefix with a sup-
plemental proposition E .

■ϕ⇝ ϕUE ♦ϕ⇝ (¬E)Uϕ (6)

These operators serve as convenience for an ‘always-like’ and ‘eventually-like’
specification in a co-safe LTL.
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Satisfiability Modulo Theories (SMT) We take a constraint-based planning ap-
proach [10,16] represented using Satisfiability Modulo Theories (SMT) [6]. The
constraint based encoding constructs a formula that represents possible plans
over some finite horizon h. Decision variables in the formula indicate values
of each fluent or state variable f at each step k, which we write as f ⟨k⟩. For-
mula constraints represent valid state changes between successive steps k,k + 1.
Specifically, the formula consists of (1) a start constraint s which is the start
configuration of fluents, (2) some formula c defining the transition function of
the system at each step k, and (3) the goal configuration g⟨h⟩ which requires all
the relevant fluents to have the desired values at the end of the plan. We then
pass the formula to an SMT solver [5], which either produces a satisfying assign-
ment encoding a plan or determines the formula is unsatisfiable. If the formula
is unsatisfiable, one may choose to increase the number of steps h, or, especially
in our case, find more information about the environment for the formula (see
subsection 4.4).

Transforming LTL to SMT formulae Since we specify the visibility requirements
using co-safe LTL, we must translate this specification to SMT [3,13]. We sum-
marize this procedure in Algorithm 2. We directly handle practically always (■)
and practically eventually (♦) to eliminate the decision variable for E by setting
values for E of E⟨h⟩ = ⊥ and E⟨k⟩ = ⊤, ∀k ∈ 1, . . . , h− 1.

Algorithm 2: Transforming an LTL formula to SMT constraints
Input: ψ; // LTL formula
Input: R; // Robots
Input: N ; // The plan horizon
Output: SMT formula Fψ

1 Function ExpandLTL(ϕ,min,max):
2 if Proposition?(ϕ) then return ϕ;
3 else if oper (ϕ) ∈ {∧,¬,∨} then
4 F ← ();
5 for o in operands(ϕ) do F ← F oper (ϕ) ExpandLTL(o,min,max);
6 return F

7 else if oper (ϕ) = ♦ then
8 F ← () ;
9 for i from min to max do

10 F ← F ∨ ExpandLTL(expression(ϕ), i,max);

11 return F

12 else if oper (ϕ) = ■ then
13 F ← () ;
14 for k from min to max do
15 F ← F∧ ExpandLTL(expression(ϕ), i,max);

16 return F

17 return ExpandLTL(ψ, 0, N);
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Task Planning for Visibility Now we describe the task planning approach
for Definition 1. Using a constraint-based formulation, there are three parts to
the constraints: motion between partitions in the visibility abstraction, visibility
status based on the current set of partitions, and the visibility specification
from Definition 1. Once we have constructed the formula, we find a satisfying
assignment representing the plan.

Mobility Constraints Mobility constraints encode the movement of robots through
the environment. The possible locations are partitions p ∈ Q, which we repre-
sent using an SMT enumerated type. For each robot r, we define the fluent at (r)
that maps to the robot’s location p ∈ Q. Movement is possible between adjacent
partitions according to the following constraint,(

at(r)
⟨k+1⟩

= i
)

=⇒
(
at(r)

⟨k⟩
= i

)
∨

∨
j∈neighbors(i)

(
at(r)

⟨k⟩
= j

)
, ∀r, i, k , (7)

where k indicates the current timestep and i and j are partitions.

Visibility Constraints Visibility constraints determine which robots and parti-
tions are visible or occluded. We construct the constraints from known visibilities
described in subsection 4.1. A robot r1 in partition p1 inherits visibility status
of the partition. First, considering one robot, other partitions p2 are visible or
occluded according to the status with respect to p1,(

at(r1)
⟨k⟩

= p1

)
=⇒

(
V(r1, p2)⟨k⟩ = V(p1, p2)

)
. (8)

Second, considering another robot r2 in partition p2, visibility status is similarly
inherited,(

at(r1)
⟨k⟩

= p1

)
∧
(
at(r2)

⟨k⟩
= p2

)
=⇒

(
V(r1, r2)⟨k⟩ = V(p1, p2)

)
. (9)

Visibility Specification The final part of the constraints is the visibility specifica-
tion Ψ from Definition 1. Considering Ψ as a formal language specified in co-safe
LTL, we construct the SMT constraints using Algorithm 2.

Once we have built the full set of constraints, we check satisfiability. If a
satisfying assignment is found, the plan, in the form of successive locations for
robots, is extracted from the assignments to the at (α)β variables. Otherwise,
we refine the abstraction and iterate (see Figure 1).

4.4 Refinement

We develop a refinement procedure based on the visibility lattice (see Defini-
tion 3) properties (see Proposition 2) and optimization formulations (subsec-
tion 4.2) to address cases where a plan may need to traverse indeterminate
(PARTIAL, UNKOWN) regions. Algorithm 3 summarizes the procedure. Refin-
ing convex partition p subdivides p into multiple convex children p0, . . . , pn whose
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union is p (line 1); our implementation (see section 5) subdivides partitions as
octrees, though other partitioning methods, such as binary-space partitioning,
are possible. Under Proposition 2, when p and another partition p′ are fully visi-
ble or occluded, then for each subpartition pi of p, we may conclude pi and p′ are
equivalently fully visible or occluded (line 4). Otherwise, when p and p′ are in-
determinate, we perform the occlusion tests of Algorithm 1 (line 5). The refined
partitioning may indicate that a planned sequence traversals are valid, invalid,
or still indeterminate. When the traversals are valid, we have found the plan
and terminate. When the traversals are invalid, we find an alternative task plan.
When the traversals are still indeterminate, we iteratively continue to refine.

Algorithm 3: Visibility Refinement
Input: W =Wfree ∪Wobs, p; // Workspace, Partition to Refine
InOut: Q, V ; // Set of Partitions, Visibility

1 p0, . . . , pn ← subdivide(p);
2 foreach pi ∈ p0, . . . , pn do
3 foreach p′ ∈ leaves(Q) do
4 if V(p, p′) ∈ {OCCLUDED,FULL} then V(pi, p′)← V(p, p′);
5 else V(pi, p)← ComputeOcclusion(pi, p); // Algorithm 1

6 Q ← Q∪ {p0, . . ., pn};

4.5 Completeness

In this section we analyze the completeness properties of our algorithm. For in-
finitesimal (point) robots, we show that our approach is complete under clearance
assumptions.

Definition 5. An r-clearance path is a set of partitions P needed to be traversed,
visible, or occluded to satisfy Ψ where each partition has a non-infintessimal
volume of at least r.

Lemma 1. When an r-clearance path exists, then in finite time, T will contain
leaf nodes covering the r-clearance path and which have fully determined status,
that is, one of OCCLUDED,FULL.

Proof. For the FULL case we have a direct proof. Since our path exists, for some
partition in the path Pi where full visibility is required to some other partition
p′, eventually, we will have some region p ∈ Q, such that p ⊆ Pi, so that the
FULL state will be found by our algorithm—i.e., an obstacle-free convex hull
exists around p′, Pi, since p ⊆ Pi, it does there too.

Next we cover the OCCLUDED case:
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– Since the r-clearance path exists, for some partition in the path Pi which
must be OCCLUDED to some other partition p′, we must have a node
p ⊆ Pi, p ∈ Q.

– Necessary occluded partitions along an r-clearance path must be caused by
non-infinitesimal obstacles.

– For two small-enough occluded partitions, all potential lines of sight are cut
by some one obstacle, that is, an individual line from some point p1 ∈ p′ and
p2 ∈ p must be cut off by a face of Wobs.

– When our leaf partitions become small enough, we are eventually guaranteed
to hit a special case in the graph search on line 2 of Algorithm 1—the graph
search fails to return any path, because no path exists between the start p1
and end region p2, since given a small enough size (< r), and a single obstacle
in Wobs will divide the freespace decomposition graph into disconnected
parts, and no path is possible. Since obstacles are non-infinitesimal, we will
eventually find these regions, in finite time, even if the other steps of the
occlusion-finding procedure fail to produce OCCLUDED.

Theorem 1. Our algorithm is complete for point-robots.

Proof. The proof follows from Lemma 1. If an r-clearance path exists, we will
eventually find nodes in T that are in the path in finite time and construct a
plan. Otherwise, we continue refining.

This concludes our completeness proof. Note that this proof does not cover
non-point robots which may be larger than a region of occlusion or which may
be too large to pass between regions of occlusion. For such non-point robots,
we can still obtain completeness where Ψ only contains visibility constraints like
visible (α, β) since the first part of Lemma 1 still applies. However, we have
not proven completeness of this algorithm for non-point robots and occlusion
constraints in Ψ of the form ¬ visible (α, β).

5 Experiments

In this section we show our experimental results using our approach for two
different types of problems, one with eventual visibility constraints (we must
eventually find something visible) and another with always occlusion constraints
(we must never be seen). All experiments were run on a multi-core system with
a single AMD Ryzen 9 12-core processor with hyperthreading enabled, for a
total of 24 usable cores, and 32 GB of RAM. For convex decompositions and
collision detection, we use the CGAL project [17]. To construct and solve SMT
expressions, we use the TMKit [4] software package to interface with the Z3
SMT solver [5] .

To leverage multiple CPUs, line 5 in Algorithm 3 is run asynchronously on
multiple threads so that the ComputeOcclusion algorithm is run in parallel for
different pairs of regions in Q. All experiments used 14 threads for this kind of
refinement.
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5.1 Industrial Survey

Here, we require a team of robots not bound to the ground (like drones) to
survey an industrial site. The goal is for a team of drones to obtain visibility of
wind turbines in a wind farm.

We created a scene of 16 wind turbines on a heightmap. The robots (two
drones, x and y) were tasked with observing various “user regions”. User regions
are like regular regions in Q except they are specified by the user, and so are
not further subdivided. User regions were specified to surround all turbines so
that if all user regions around a turbine were seen, most important details of the
turbine should be visible, see Figure 7, and also Table 1 for details. The LTL
specification is,

♦

 ∧
r∈user−regions

(visible (x, r) ∨ visible (y, r))

 . (10)

This experiment shows the ability of our approach to find regions in space to
observe given target regions. It also shows the expressiveness of LTL for visibility
requirements of multiple robots.

Fig. 7: Various angles of a single plan that required all the user regions (shown
in red) to be fully visible to at least one drone. Regions for different robots are
drawn as translucent cubes. Line-of-sight is demonstrated by a small black line
from the robot to the target it is viewing.

5.2 Wildlife Count

In this experiment we solve the “Park Ranger Problem”. An agent (x) (a park
ranger drone) must avoid being seen by an area (R) known to have sensitive
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wildlife while observing some other target region (G)—perhaps a different set of
wildlife to be observed, or a potential search and rescue target. The algorithm
successfully finds a plan where the “avoid” region is always fully occluded from
the goal region. The LTL specification for this problem is,

■ (¬ visible (x, R)) ∧ ♦(visible (x, G)) . (11)

The results are in Figure 8 and Table 1. This experiment demonstrates that
our approach also allows for the reverse of the experiment in subsection 5.1—we
can stay fully occluded from some undesirable region.

Fig. 8: Snapshots of the plan that allowed the park ranger drone to see the target
wildlife area (small red box) while avoiding the larger sensitive area (larger red
box).

Nodes Processed Nodes in SMT Planning Time(s) Total(s)
Industrial Survey 703 617 14141.86 21574.83
Wildlife Count 253 223 62.23 2512.91
Table 1: Experimental metrics. Plans in both scenarios were 10 steps.

6 Conclusion

In this paper formulated the Park Rangers’ Problem for sequential visibility
tasks, and we introduce an abstraction and refinement approach for such tasks.
Our method subdivides the robot world into partitions to enable symbolic plan-
ning for the visibility requirements, and we analyze the method to show its com-
pleteness under clearance and robot size assumptions. Our experimental results
demonstrate the approach’s validity, and future work to combine abstraction
steps (such as convex decompositions) and efficiently update constraints (such
as incremental constraints solving) will support planning for larger environments
and more agents.
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